Volume of Known Cross-Sections

Consider the humble cylinder. Use your modeling stuff to make a cylinder. If you could cut a slice parallel to the base, what would it look like?
How could we find its volume?

$$
V=\pi \Omega^{2} h
$$

From: http://mathworld.wolfram.com/Cylinder.html

What would a slice parallel to the base look like? How about the volume of a rectangular prism?
From: http://www.shodor.org/interactivate/activities/SurfaceAreaAndVolume

We can also think of this as:
Volume $=$ [area of the base] [height]
The base is a rectangle, so we can think of a stack of rectangles.

How about a solid make up of a stack of triangles?
All triangles are the same size [or every "slice" is a congruent triangle]
Make one with your modeling stuff.
How would we find the volume?

$$
V=<s<c 10\left(\begin{array}{c}
\text { arenof me } \\
\text { Trisinge } \\
\text { heGwt }
\end{array}\right)
$$

Can you think of candy whose cross sections are circles, rectangles, or triangles?

Now with your modeling stuff make a solid whose cross sections are all circles but all of the circles have different radii. [from very, very small to larger]
What does it look like? Carrot

$$
\begin{aligned}
& \text { or parsnip } \\
& \text { Or Cone }
\end{aligned}
$$

Make a solid whose cross sections are squares - but each square has a different side length.
What does it look like?
square pyramid

Images from Google Images
[What are the cross sections?]

Our Handy-Dandy Formula to find the Volume of a Solid with Known Cross-Sections $\odot \cdot) \cdot(\cdot)$ Volume = [area of a cross-section]*[height]
We need to figure out how to use calculus for this! Since we are "summing up" the areas of each cross-section, then should we integrate or differentiate?

Our Calculus formula: $\rightarrow \infty$

$V=\int_{a} A(x) d x$ where $A(x)$ is the area of a cross section
Let's consider the following:
note: Cross-section to the

$$
X-A \times I S
$$

Find the volume of the solid created on a region whose base is the function $y=\sqrt{1-x^{2}}$ for $0 \leq x \leq 1$. For this solid, each cross section perpendicular to the X-axis is a square. Let's try to figure out what this looks like.

The volume can be found with our handy-dandy formula! 9 $\int_{0} A(x) d x$ where $A(x)$ is the area of a cross section.
Each cross section is a square so the area of a cross section is equal to s^{2} where $s=\sqrt{1-x^{2}}$ and our side lengths will vary according to our upper and lower bounds I

$$
\begin{aligned}
a(x) & =1^{2} \\
& \int_{0}^{1}\left[\sqrt{1-x^{2}}\right]^{2} d x
\end{aligned}
$$

$\int_{0}^{1} A(x) d x$
2
$\begin{aligned} a(x) & \left.=\frac{1}{2}\right)^{2} \\ & =\left(\sqrt{1-x^{2}}\right)^{2}\end{aligned}$

$$
\begin{aligned}
V & =\int_{0}\left(1-x^{2}\right) d x \\
& =x-\left.\frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{2}{3} \text { cu. }
\end{aligned}
$$

Now let's find the volume of the solid formed with a base function $y=\sqrt{x}$ with $0 \leq x \leq 9$, but with semi-circles as our cross sections that are perpendicular to the X-axis Here is our base:

This one is hard to visualize.
Here is an awesome video:
http://mathdemos.org/mathdemos/sectionmethod/sqrtcirccross75.gif
http://mathdemos.org/mathdemos/sectionmethod/sqrtcirccross75slab.gif
And here is an image of one:

Once again, $V=\int_{0}^{9} A(x) d x$

$V=\int_{0} \frac{\pi}{2}\left(\frac{1}{2} \sqrt{x}\right)^{2} d x$
$\Omega=\frac{1}{2} \sqrt{x}$
$=\int^{9} \frac{\pi}{2}\left(\frac{x}{4}\right) d x$
$=\frac{\pi}{8} \int_{0}^{0} x d x \quad=\left.\frac{\pi}{8}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{9}$
One more, a circular base [a radius of 2]
with right isosceles triangle whose leg is on the base and each cross section is perpendicular to the X-axis
http://mathdemos.org/mathdemos/sectionmethod/circisoscross75slab.gif

$$
y= \pm \sqrt{4-x^{2}}
$$

You try to set up the following:
Find the volume of the solid created on a region whose base is the function $y=X^{2}$ for $0 \leq x \leq 3$

And the cross-sections are squares, semi-circles, and right isosceles triangles with the leg on the base and each cross section is perpendicular to the x-axis

$$
\begin{aligned}
& \int_{0}^{3} a(x) d x \\
= & \int_{0}^{3}\left(x^{2}\right)^{2} d x
\end{aligned}
$$

squmes

$$
\begin{aligned}
& a(x)=s^{2} \\
& s=x^{2}
\end{aligned}
$$

$\int_{0}^{3} a(x) d x$
semi-circles

$$
a(x)=\frac{\pi}{2} r^{2}
$$

$=\int_{0}^{3} \frac{\pi}{2}\left(\frac{x^{2}}{2}\right)^{2} d x$

RigHTTIsosceces \triangle

$$
V=\int_{0}^{3} a(x) d x
$$

$$
a(x)=\frac{1}{2} b^{2}
$$

$$
V=\int_{0}^{3} \frac{1}{2}\left(x^{2}\right)^{2} d x
$$

$$
b=x^{2}
$$

Now let's consider the relation $x^{2}+y^{2}=1$
Find the volume of an object whose base is the relation above and when the cross sections are squares and each cross section is perpendicular to the x-axis

Here is a cool website where we can visualize this

http://www.ies.co.jp/math/java/samples/renshi.html

There is a solid whoese bottom face is the circle $x^{2}+y^{2} \leqq 1$. And every cross-section of the solid perpendicular to x -axis is a square.

Find the volume of the solid.

Here's what it looks like with a few squares:

With a lot more squares:

Cardboard Model

Area of a cross section = area of a square Here is the base of the solid.

If $x^{2}+y^{2}=1$, then $y= \pm \sqrt{1-x^{2}}$ with a domain of $[-1,1]$

$$
\begin{aligned}
& a(x)=s^{2} \\
& \alpha=2 \sqrt{1-x^{\alpha}} \\
& V=\int_{-1}^{1}\left[2 \sqrt{1-x^{2}}\right]^{\alpha} d x
\end{aligned}
$$

Let's change one thing! What would be the volume if the cross sections were semi-circles instead of squares? And, each cross section is perpendicular to the x-axis

$$
\left.\begin{array}{c}
a(x)=\frac{\pi}{2} r^{2} \\
V=\int_{-1}^{\Omega} \frac{\pi}{2}\left(\sqrt{1-x^{2}}\right. \\
\left(1-x^{2}\right.
\end{array}\right) d x .
$$

Lots of cool photos at:
http://mathdemos.gcsu.edu/mathdemos/sectionmethod/s ectiongallery.html

Homework
 Handout [see next pages if you were not in class]

Mr. Zab's Volume of K nown C ross Sections Handout [Day One]

Let R_{1} be the region in the first quadrant bounded by $\mathrm{y}=\mathrm{x}$, the y -axis, and the line $\mathrm{y}=1$. Let R_{2} be the region in the first quadrant bounded by $\mathrm{y}=x^{2}$ and $\mathrm{y}=\mathrm{x}$. Let R_{3} be the region in the first quadrant bounded by $\mathrm{y}=\mathrm{x}^{2}$, the x -axis, and the line $\mathrm{x}=1$.

Instructions:

State $A(x)$ [the area of a cross section]
Set up the integral to find the volume Use your TI to calculate the volume
16. Let R_{1} be the base of a solid in the $\mathrm{x}-\mathrm{y}$ plane. If cross sections of the solid perpendicular to the x -axis are squares, find the volume of the solid.
17. Let R_{1} be the base of a solid in the $\mathrm{x}-\mathrm{y}$ plane. If cross sections of the solid perpendicular to the x -axis are semicircles, find the volume of the solid.
18. Let R_{2} be the base of a solid in the $\mathrm{x}-\mathrm{y}$ plane. If cross sections of the solid perpendicular to the x -axis are squares, find the volume of the solid.
19. Let R_{2} be the base of a solid in the $x-y$ plane. If cross sections of the solid perpendicular to the x-axis are semicircles, find the volume of the solid.
20. Let R_{3} be the base of a solid in the $\mathrm{x}-\mathrm{y}$ plane. If cross sections of the solid perpendicular to the x -axis are squares, find the volume of the solid.
21. Let R_{3} be the base of a solid in the $\mathrm{x}-\mathrm{y}$ plane. If cross sections of the solid perpendicular to the x-axis are semicircles, find the volume of the solid.

