AP Calculus AB Linearization/ Local Linearity Section 5.5

AP Questions:

1998 AP Calculus AB Scoring Guidelines

4. Let \(f \) be a function with \(f(1) = 4 \) such that for all points \((x, y)\) on the graph of \(f \) the slope is given by \(\frac{3x^2 + 1}{2y} \).

(a) Find the slope of the graph of \(f \) at the point where \(x = 1 \).

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = 1 \) and use it to approximate \(f(1.2) \).

1995 AB3

Consider the curve defined by \(-8x^2 + 5xy + y^3 = -149\).

(a) Find \(\frac{dy}{dx} \).

(b) Write an equation for the line tangent to the curve at the point \((4, -1)\).

(c) There is a number \(k \) so that the point \((4.2, k)\) is on the curve. Using the tangent line found in part (b), approximate the value of \(k \).

(d) Write an equation that can be solved to find the actual value of \(k \) so that the point \((4.2, k)\) is on the curve.

(e) Solve the equation found in part (d) for the value of \(k \).

AB?

Let \(f \) be the function defined by \(f(x) = (1 + \tan x)^\frac{3}{2} \) for \(-\frac{\pi}{4} < x < \frac{\pi}{2}\).

(a) Write an equation for the line tangent to the graph of \(f \) at the point where \(x = 0 \).

(b) Using the equation found in part (a), approximate \(f(0.02) \).
Let \(f \) be a function that is differentiable for all real numbers. The table above gives the values of \(f \) and its derivative \(f' \) for selected points \(x \) in the closed interval \(-1.5 \leq x \leq 1.5\). The second derivative of \(f \) has the property that \(f''(x) > 0 \) for \(-1.5 \leq x \leq 1.5\).

Write an equation of the line tangent to the graph of \(f \) at the point where \(x = 1 \). Use this line to approximate the value of \(f(1.2) \). Is this approximation greater than or less than the actual value of \(f(1.2) \)? Give a reason for your answer.

Multiple Choice:

The approximate value of \(y = \sqrt{4 + \sin x} \) at \(x = 0.12 \), obtained from the tangent to the graph at \(x = 0 \), is

(A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24
AP Calculus AB

Linearization/Local Linearity Section 5.5

AP Questions:

1998 AP Calculus AB Scoring Guidelines

4. Let \(f \) be a function with \(f(1) = 4 \) such that for all points \((x, y)\) on the graph of \(f \) the slope is given by \(\frac{3x^2 + 1}{2y} \).

(a) Find the slope of the graph of \(f \) at the point where \(x = 1 \).
(b) Write an equation for the line tangent to the graph of \(f \) at \(x = 1 \) and use it to approximate \(f(1.2) \).

\[
\begin{align*}
3(1) + 1 &= \frac{4}{8} = \frac{1}{2} \quad &b) & y - 4 = \frac{1}{2}(x - 1) \\
L(x) &= \frac{1}{2}x + 3.5 \\
L(1.2) &= 4.1
\end{align*}
\]

1995 AB3

Consider the curve defined by \(-8x^3 + 5xy + y^3 = -149\). \[-16x + 5y + 5x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0\]

(a) Find \(\frac{dy}{dx} = \frac{16x - 5y}{5x + 3y^2} \).

(b) Write an equation for the line tangent to the curve at the point \((4, -1)\).

(c) There is a number \(k \) so that the point \((4.2, k)\) is on the curve. Using the tangent line found in part (b), approximate the value of \(k \). \(k = 3(4.2) - 13 = -2.5 \approx -4 \)

(d) Write an equation that can be solved to find the actual value of \(k \) so that the point \((4.2, k)\) is on the curve.

\[-8(4.2)^2 + 5(4.2) y + y^3 = -149\]

(e) Solve the equation found in part (d) for the value of \(k \).

Let \(f \) be the function defined by \(f(x) = (1 + \tan(x))^\frac{3}{2} \) for \(-\frac{\pi}{4} < x < \frac{\pi}{2}\).

(a) Write an equation for the line tangent to the graph of \(f \) at the point where \(x = 0 \).

(b) Using the equation found in part (a), approximate \(f(0.02) \).

\[
\begin{align*}
a) & f'(x) = \frac{3}{2} (1 + \tan(x))^\frac{1}{2} (\sec^2(x)) \quad y - 1 = \frac{3}{2}(x - 0) \\
& f'(0) = \frac{3}{2} (1 + 0)^\frac{1}{2} (\sec^2(0))^2 \\
& = \frac{3}{2} = 1.5 \\
b) & L(x) = \frac{3}{2}x + 1 \\
& L(0.02) = \frac{3}{2}(0.02) + 1 \\
& = 1.03 \\
f(0.02) & \approx 1.03
\end{align*}
\]
Let \(f \) be a function that is differentiable for all real numbers. The table above gives the values of \(f \) and its derivative \(f' \) for selected points \(x \) in the closed interval \(-1.5 \leq x \leq 1.5\). The second derivative of \(f \) has the property that \(f''(x) > 0 \) for \(-1.5 \leq x \leq 1.5\).

Write an equation of the line tangent to the graph of \(f \) at the point where \(x = 1 \). Use this line to approximate the value of \(f(1.2) \). Is this approximation greater than or less than the actual value of \(f(1.2) \)?

\[
(1, -4) \quad f'(1) = 5
\]
\[
y + 4 = 5(x - 1)
\]
\[
\underline{y = 5x - 9}
\]
\[
f(1.2) \approx L(1.2) = -3
\]

* The graph is concave up since \(f'' > 0 \) at \(x = 1.2 \) so the tangent line is below the graph making the approximation less than the actual value.

Multiple Choice:

The approximate value of \(y = \sqrt{4 + \sin x} \) at \(x = 0.12 \), obtained from the tangent to the graph at \(x = 0 \), is

(A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24

\[
y' = \frac{1}{2} (4 + \sin x)^{-1/2} \cos x
\]
\[
y'(0) = \frac{1}{2} (4)^{-1/2} = 1
\]
\[
y - 2 = \frac{1}{4} (x - 0)
\]
\[
L(x) = \frac{1}{4} x + 2
\]
\[
L(-1.2) = \frac{1}{4}(-1.2) + 2 = \boxed{2.03}
\]