
AP CALCULUS AB

Practice Problems - Areas and Volumes

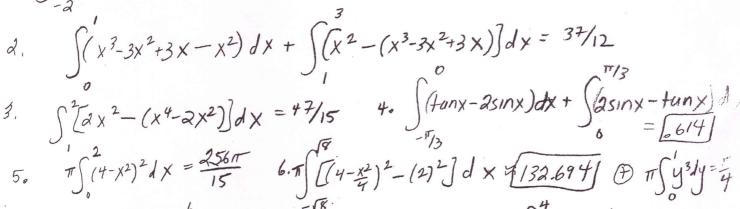
1. Find the area between the curves $f(x) = x^2 + 2x + 1$ and g(x) = 2x + 5.

3. Find the area of the region bounded by $y = x^4 - 2x^2$; $y = 2x^2$; x = 1 and x = 2.

'4. Find the area between $f(x) = 2 \sin x$ and $g(x) = \tan x$ for $-\pi/3 < x < \pi/3$.

5. Find the volume of the solid created by revolving the region in the first quadrant bounded by $y = 4 - x^2$; x = 0 and y = 0 about the x-axis.

6. Find the volume of the solid created by revolving the region bounded by $y = 4 - x^2/4$ and y = 2 (in the first and second quadrants) about the x-axis. $4 - x^2 = 2$


7. Find the volume of the solid created by revolving the region in the first quadrant bounded by $y = x^{2/3}$; y = 1 and x = 0 about the y-axis. $x = y^{3/2}$

8. Find the volume of the solid created by revolving the region bounded by $y = 6 - 2x - x^2$ and y = x + 6 about the line y = 3.

-> 8) T ((6-2x-x2-3)2-(x+6-3)2dy 9. The region R is bounded by $y = \frac{1}{2}x^2$; y = 0 and x = 6. R is the base of a solid whose cross sections are perpendicular to the x-axis. Find the volume of this solid if its cross sections are (a) squares and (b) semi-circles.

10. The region R is bounded by $y = \sqrt{x}$; y = 0 and x = 4. R is the base of a solid whose cross sections are perpendicular to the x-axis. Find the volume of this solid if its cross sections are/(a) rectangles with a height of 10) and (b) equilateral triangles.

$$\frac{A - b \cdot h = 10b}{(a \times +5) - (x^2 + a \times +1)} dx = 32/3$$

a) $\int (\pm x^2)^2 dx = 38868$ (b) a) $\int (\sqrt{x}) \cdot 10 dx = 63.333$ b) $\int \sqrt{4} \pi (\pm x^2)^2 dx = 152.681$ b) $\int \sqrt{4} (\sqrt{x})^2 dx = 2\sqrt{3}$ (8) Abore (9) 1) ((±x2) dx = 38808

b)
$$\int_{0}^{6} \sqrt{4} x^{2} dx = 152.681$$
 b) $\int_{0}^{4} (\sqrt{x}) \sqrt{3} dx = 2\sqrt{3}$

6 A=52/3 S=VX