

SOLUTIONS

Multiple Choice

- 1. Answer (e). First use the Second Fundamental Theorem of Calculus to find $g'(x) = x^3 e^x$. Differentiating this expression, $g''(x) = 3x^2 e^x + x^3 e^x$. Finally, g''(1) = 3e + e = 4e. You could have used integration by parts to explicitly find the antiderivative, but it would have made the problem much more difficult.
- 2. Answer (c).

$$h(x) = \int_{x^2}^2 \sqrt{1 + t^4} \, dt = -\int_2^{x^2} \sqrt{1 + t^4} \, dt.$$

By the Second Fundamental Theorem of Calculus and the Chain Rule, $h'(x) = -\sqrt{1 + (x^2)^4} (2x)$ and $h'(1) = -2\sqrt{2}$. Notice that the integrand does not have an elementary antiderivative.

3. Answer (e). F(x) gives the area of the region under the semicircle $y = \sqrt{16 - t^2}$ between t = -4 and t = x. As x varies from -4 to 4, F(x) goes from 0 to 8π , the area of a semicircle of radius 4. Verify this answer by graphing F(x) on the viewing window $[-4, 5] \times [0, 30]$.

Free Response

(a)
$$F\left(-\frac{3}{2}\right) = \int_{-2}^{2(-3/2)+1} f(t) dt = \int_{-2}^{-2} f(t) dt = 0.$$

- (b) By the Second Fundamental Theorem of Calculus and the Chain Rule, F'(x) = f(2x + 1)(2) and F'(0) = 2f(1) = 2.
- (c) Since the domain of f is [-2, 2], solve the inequality $-2 \le 2x + 1 \le 2$ to obtain the domain of F, [-3/2, 1/2].
- (d) F'(x) = 2f(2x+1) = 0 when 2x+1 equals -2, 0, and 2, the zeros of f. So, the critical numbers of F are $-\frac{3}{2}$, $-\frac{1}{2}$, and $\frac{1}{2}$.

By checking the two intervals determined by these three points, you can see that F is decreasing on

$$\left(-\frac{3}{2}, -\frac{1}{2}\right) (F'(-1) = 2f(-1) = -2 < 0)$$

and increasing on

$$\left(-\frac{1}{2},\frac{1}{2}\right)(F'(0)=2>0).$$

So, the minimum occurs at $x = -\frac{1}{2}$.

SOLUTIONS

Multiple Choice

- 1. Answer (b). Set the derivative of the position function equal to zero: $v(t) = x'(t) = 1 + \ln 2t = 0$. This gives $\ln 2t = -1$ or t = 1/(2e). The acceleration is a(t) = v'(t) = 1/t and so a(1/(2e)) = 2e.
- 2. Answer (c). The total distance traveled by the particle is the integral of the speed. Because the graph of v(t) is nonnegative on $[0, \pi/2]$, and negative on $(\pi/2, \pi)$ you must split up the integral as follows.

total distance =
$$\int_0^{\pi} |\sin 2t| dt = \int_0^{\pi/2} \sin 2t dt + \int_{\pi/2}^{\pi} (-\sin 2t) dt = 1 + 1 = 2.$$

You can verify this answer by integrating $y = |\sin 2t|$ from t = 0 to $t = \pi$ with a graphing utility. Notice that the particle has returned to its original position.

3. Answer (e). You can obtain the velocity by integrating the acceleration function using integration by parts.

$$v(t) = \int a(t) dt = \int te^{2t} dt = \frac{1}{2}te^{2t} - \frac{1}{4}e^{2t} + C$$

Since v(0) = -1/4, C = 0. The speed at t = 1/4 is the absolute value of the velocity.

speed =
$$\left| v \left(\frac{1}{4} \right) \right| = \left| \frac{1}{8} e^{1/2} - \frac{1}{4} e^{1/2} \right| = \left| -\frac{\sqrt{e}}{8} \right| = \frac{\sqrt{e}}{8}$$

Free Response

- (a) $v(t) = \int a(t) dt = \int \pi \cos \pi t dt = \sin \pi t + C$. Since v(1/2) = 1/2, $1/2 = \sin(\pi/2) + C$, which gives C = -1/2. So, $v(t) = \sin \pi t 1/2$.
- (b) Since $\sin \pi t \ge -1$, the minimum velocity is -3/2.
- (c) Integrating the velocity function, you have

$$x(t) = \int v(t) dt = \frac{-\cos \pi t}{\pi} - \frac{t}{2} + C_1.$$

Because x(0) = 0, $C_1 = 1/\pi$ and

$$x(t) = \frac{-\cos \pi t}{\pi} - \frac{t}{2} + \frac{1}{\pi}.$$

(d) The particle returns to the origin when

$$\frac{-\cos \pi t}{\pi} - \frac{t}{2} + \frac{1}{\pi} = 0.$$

By graphing the function

$$y = \frac{-\cos \pi t}{\pi} - \frac{t}{2} + \frac{1}{\pi}$$

on the interval [0, 2], you see that the first positive zero of y is approximately t = 0.353.