5. Let \(f \) be a function that is even and continuous on the closed interval \([-3,3]\). The function \(f \) and its derivatives have the properties indicated in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0 < (x < 1)</th>
<th>1</th>
<th>1 < (x < 2)</th>
<th>2</th>
<th>2 < (x < 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>Positive</td>
<td>0</td>
<td>Negative</td>
<td>-1</td>
<td>Negative</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>Undefined</td>
<td>Negative</td>
<td>0</td>
<td>Negative</td>
<td>Undefined</td>
<td>Positive</td>
</tr>
<tr>
<td>(f''(x))</td>
<td>Undefined</td>
<td>Positive</td>
<td>0</td>
<td>Negative</td>
<td>Undefined</td>
<td>Negative</td>
</tr>
</tbody>
</table>

(a) Find the \(x \)-coordinate of each point at which \(f \) attains an absolute maximum value or an absolute minimum value. For each \(x \)-coordinate you give, state whether \(f \) attains an absolute maximum value or an absolute minimum value.

(b) Find the \(x \)-coordinate of each point of inflection on the graph of \(f \). Justify your answer.

(c) In the \(xy \)-plane provided below, sketch the graph of a function with all the given characteristics of \(f \).

\[
\begin{array}{c}
\text{Graph}
\end{array}
\]

2006 form B #2- use a graphing calculator

Let \(f \) be the function defined for \(x \geq 0 \) with \(f(0) = 5 \) and \(f' \), the first derivative of \(f \), given by \(f'(x) = e^{(-x/4)} \sin(x^2) \). The graph of \(y = f'(x) \) is shown above.

(a) Use the graph of \(f' \) to determine whether the graph of \(f \) is concave up, concave down, or neither on the interval \(1.7 < x < 1.9 \). Explain your reasoning.

(b) On the interval \(0 \leq x \leq 3 \), find the value of \(x \) at which \(f \) has an absolute maximum. Justify your answer.

(c) Write an equation for the line tangent to the graph of \(f \) at \(x = 2 \).
The figure above shows the graph of \(f' \), the derivative of a twice-differentiable function \(f \), on the closed interval \(0 \leq x \leq 8 \). The graph of \(f'' \) has horizontal tangent lines at \(x = 1 \), \(x = 3 \), and \(x = 5 \). The areas of the regions between the graph of \(f'' \) and the \(x \)-axis are labeled in the figure. The function \(f \) is defined for all real numbers and satisfies \(f(8) = 4 \).

(a) Find all values of \(x \) on the open interval \(0 < x < 8 \) for which the function \(f \) has a local minimum. Justify your answer.

(b) Determine the absolute minimum value of \(f \) on the closed interval \(0 \leq x \leq 8 \). Justify your answer.

(c) On what open intervals contained in \(0 < x < 8 \) is the graph of \(f \) both concave down and increasing? Explain your reasoning.

(d) The function \(g \) is defined by \(g(x) = (f(x))^3 \). If \(f'(3) = -\frac{5}{2} \), find the slope of the line tangent to the graph of \(g \) at \(x = 3 \).