Chain Rule
Used for finding the derivative of a composite function
If $y=f(u)$ is a differentiable function of u AND $u=g(x)$ is a differentiable function of x, then $y=f(g(x))$ is a
differentiable function of x and its derivative, $\frac{d y}{d x}=\frac{d y}{d u} \bullet \frac{d u}{d x}$
Eww! That is not real helpful!

Maybe this is a little bit more helpful:
$\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
This can also be thought of as: Let $g(x)=u$
Then $\frac{d}{d x} f(u)=f^{\prime}(u) \frac{d u}{d x}$

Many people think of this as the derivative of the "outside" times the derivative of the "inside"

Let's see it at work!

Let $y=\sin ^{3} x$. Let us rewrite this first and then find the derivative.

$$
\begin{aligned}
& y=(\sin x)^{3} \\
& y=u^{3}
\end{aligned}
$$

Now define what "u" should be.

$$
\begin{gathered}
u=\sin x \\
\frac{d u}{d x}=\cos x \\
y_{1}=u^{3} \\
y_{1}^{\prime}=3 u^{2} \frac{d u}{d x}
\end{gathered} \quad y^{\prime}=3 \sin ^{2} x \cos x
$$

Now let us find the derivative of $y=\sin (11 x)$.
Give me a "u"!

$$
x=11 x
$$

$$
y=\sin u \quad \frac{d u}{d x}=11
$$

$$
y^{\prime}=\cos u \frac{d u}{d x}
$$

$$
y^{\prime}=11 \cos (11 x)
$$

Our goal most of the time will be to rewrite the function in order to see the "inside" or the $g(x)$ - part of $f(g(x))$. It is useful to get rid of some grouping symbols such as the division bar or the $\sqrt{ }$.

Let $\quad y=\sqrt{3 x^{2}+17 x}$
Rewrite as $\quad y=\left(3 x^{2}+17 x\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& y=u^{\frac{1}{2}} \quad u=3 x^{2}+17 x \\
& y^{\prime}=\frac{1}{2} u^{-\frac{1}{2}} d u \quad \frac{d u}{d x}=6 x+17 \\
& y^{\prime}=\frac{1}{2 \sqrt{3}+\frac{1}{2}+3}(6 x+17)
\end{aligned}
$$

Let $h(x)=\frac{1}{x+13}$

$$
\begin{array}{ll}
h(x)=(x+13)^{-1} & u=x+13 \\
h(x)=u^{-1} & \frac{d u}{d x}=1 \\
h^{\prime}(x)=-1 u^{-2} \frac{d u}{d x} & \\
h^{\prime}(x)=\frac{-1}{(x+13)^{2}} &
\end{array}
$$

Try:

$$
\begin{array}{ll}
f(x)=\left(2 x^{2}+5\right)^{7} \\
f(x)=u^{7} \\
f^{\prime}(x)=7 u^{6} \frac{d u}{d x} \\
f^{\prime}(x)=28 x\left(2 x^{2}+5\right)^{6}
\end{array} \quad-\frac{d}{d x}=4 x
$$

See page 137 \#1-6

Now find the derivatives of each of these

More of the Chain Rule
Give me a "u"!
Let u be a differentiable function of x

$$
\frac{d}{d x} f(u)=f^{\prime}(u) \frac{d u}{d x}
$$

Looking for patterns:

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\sin (2 x) \quad$$\quad$$=2 x$ $d x$ d $\sin (3 x)$	$2 \cos (2 x)$
$\sin (4 x)$	$3 \cos (3 x)$
$\sin (n x), n \in$ Reals, $n \neq 0$ $\sin u$	$4 \cos (4 x)$

$$
\frac{d}{d x} \cos (n x)=-n \sin (n x)
$$

Sometimes you have to use the Chain Rule more than once. For instance, let $y=\sin ^{2}(3 x)$
We could think of this as: $y=(\sin (3 x))^{2}$
If we did, then $y=U^{2}$ where $u=\sin (3 x)$
If $u=\sin (3 x)$, then $\frac{d u}{d x}$ would need to be found using the
Chain Rule. Good thing we already know this.
If $u=\sin (3 x)$, then $\frac{d u}{d x}=3 \cos (3 x)$
Now we can find $y^{\prime} \quad$ [We can do this!!!]
$y=(\sin (3 x))^{2}$
$y=u^{2}$
$y^{\prime}=2 u \bullet \frac{d u}{d x}$

$$
\begin{aligned}
& u=\sin (3 x) \\
& \frac{d u}{d x}=3 \cos (3 x)
\end{aligned}
$$

$y^{\prime}=6 \sin (3 x) \cos (3 x)$

Now let us consider $y=\sqrt{\tan (4 x)}$
Stupid $\sqrt{ }$ Let us rewrite

$$
\begin{array}{ll}
y=(\tan (4 x))^{\frac{1}{2}} \\
y= & u x^{\frac{1}{2}} \\
y^{\prime}= & \frac{d u}{d x} \\
y^{\prime}=\frac{2 \sqrt{u}}{2 \sec ^{2}(4 x)} \\
\sqrt{\tan (4 x)}
\end{array} \quad \begin{array}{ll}
d x
\end{array} \quad \begin{array}{ll}
d \sec ^{2}(4 x \\
\end{array} \quad l
$$

Beware of poor reading skills! [When would we need the Chain Rule to find y^{\prime} ?]
$y=\cos 3 x^{2}$ is read as $y=\cos \left(3 x^{2}\right)$
$y=(\cos 3) x^{2}$ is read as $y=(\cos 3) \bullet x^{2}$ where $\cos 3$ is a constant

$$
y=\cos (3 x)^{2} \text { is read as } y=\cos \left(9 x^{2}\right)
$$

$$
y=\cos ^{2} x \text { is read as } y=(\cos x)^{2}
$$

$$
y=\cos ^{2}\left(3 x^{2}\right) \text { is read as } y=\left[\cos \left(3 x^{2}\right)\right]^{2}
$$

$y=\sqrt{\cos x}$ can be read as $y=(\cos x)^{\frac{1}{2}}$

Try:
Let $f(x)=\sin (\sqrt{x})$. Find $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=\sin u \\
& f^{\prime}(x)=\cos u \frac{d u}{d x} \\
& f^{\prime}(x)=\frac{\cos (\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Let $g(x)=\tan ^{2}\left(x^{2}\right)$. Find $g^{\prime}(x)$

$$
\begin{array}{rlrl}
g(x) & =u^{2} & u=\tan \left(x^{2}\right) \\
g^{\prime}(x) & =2 u \frac{d u}{d x} & \frac{d u}{d x}=2 x \sec ^{2}\left(x^{2}\right) \\
& =4 x \sec ^{2}\left(x^{2}\right) \tan \left(x^{2}\right)
\end{array}
$$

Let $h(x)=\sqrt{\sin (2 x)}$. Find $h^{\prime}(x)$

$$
\begin{array}{ll}
h(x)=\sqrt{u} & u=\sin (2 x) \\
h^{\prime}(x)=\frac{1}{2 \sqrt{u}} \frac{d u}{d x} & \frac{d u}{d x}=2 \cos (2 x) \\
h^{\prime}(x)=\frac{\not 2 \cos (2 x)}{\not 2 \sqrt{\sin (2 x)}} &
\end{array}
$$

Homework: Read 2.4, do page 137 \#7, 11, 13, 17, 21 25, 26, $2741,43,45,47,51,53$ [Please state your u and $\frac{d u}{d x}$ and clearly show your steps using standard mathematical notation, blah, blah, blah, ...]
If all you have is the function and the derivative, then
NO points will be awarded.
Note: Some problems requires the Chain Rule AND the Product Rule, or they require the Chain Rule AND the Quotient Rule

