Chapter 3-Applications of Differentiation

3.1-Extrema on an Interval - Guidelines p. 163

Absolute Extrema - The highest and lowest point on an interval (can include the endpoints).
Relative Extrema - Critical numbers which are a "hill" or "valley".
Critical Numbers - Where $\mathrm{f}^{\prime}(\mathrm{c})=0$ or does not exist.

3.2 - Rolles's Theorem and the Mean Value Theorem

Rolle's Theorem - If f is continuous $[a, b]$, differentiable (a, b), and $f(a)=f(b)$, then there is at least one number c where $f^{\prime}(c)=0$.
Mean Value Theorem - If f is continuous $[\mathrm{a}, \mathrm{b}]$ and differentiable (a, b), then there is at least one number c where $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

3.3-Increasing and Decreasing Functions and the First Derivative Test-Guidelines p. 175

Decreasing/Increasing Functions - If f is continuous $[\mathrm{a}, \mathrm{b}]$ and differentiable (a, b), then f is increasing when f ' $(\mathrm{c})>0$, f is decreasing when $\mathrm{f}^{\prime}(\mathrm{c})<0$, and f is constant when $\mathrm{f}(\mathrm{c})=0$.
First Derivative Test - If c is a critical number (a, b) and differentiable (a, b) except possibly at c, then $f(c)$ is a relative minimum when $f^{\prime}(c)$ changes from - to,$+ f(c)$ is a relative maximum when $f^{\prime}(c)$ changes from + to - , and $f(c)$ is neither when $f^{\prime}(c)$ does not change.

3.4-Concavity and the Second Derivative Test

Concavity - If f "(c) >0, then concave upward (Happy). If f "(c) <0, then concave downward (Sad).
Points of Inflection - A point where the concavity changes, and f " $(\mathrm{c})=0$ or does not exist.
Second Derivative Test - If f ' $(c)=0$ and f " (c) exists, then $f(c)$ is a relative minimum when f " $(c)>0, f(c)$ is a relative maximum when f "(c) <0, and you must use the First Derivative Test when f " $(\mathrm{c})=0$.

3.5 - Limits at Infinity - Guidelines p. 195

Horizontal Asymptotes - If $\lim _{x \rightarrow-\infty} f(x)=L$ or $\lim _{x \rightarrow \infty} f(x)=L$, then $\mathrm{y}=\mathrm{L}$ is a horizontal asymptote.
$\underline{\text { Indeterminate Form }-\lim _{x \rightarrow \infty} f(x)=\frac{\infty}{\infty} \text { If a limit results in an indeterminate form, then divide both numerator and denominator by the }}$ highest degree in the denominator.

3.6 - A Summary of Curve Sketching - Guidelines p. 202

Domain (Possible inputs), Range (Possible outputs), \underline{x}-intercepts (where $y=0$), and y-intercepts (where $x=0$)
Vertical Asymptotes - Where a rational function produces a non-zero numerator and a denominator of zero.
Slant Asymptotes - Where a rational function (having no common factors) has the degree of the numerator exceeding the degree of the denominator by 1 . It is the non-rational part of the function after using long division to rewrite a rational function.
Curve Sketching - Find the intercepts, asymptotes, extrema, and points of inflections and then sketch the graph.

3.7-Optimization Problems - Guidelines p. 212

Using a Primary and a Secondary Equation, create an equation with a single independent variable and then find the maximums or minimums of the equation.

3.9-Differentials

Differentials - If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then $\frac{d y}{d x}=f^{\prime}(x)$. The differential is $\mathrm{dy}=\mathrm{f}$ ' $(\mathrm{x}) \mathrm{dx}$. The differential of $\mathrm{y}(\mathrm{dy})$ is the change of $\mathrm{y}(\Delta y)$ and the differential of $\mathrm{x}(\mathrm{dx})$ is the change of $\mathrm{x}(\Delta x)$.

