1990 AB5

Let \(f \) be the function defined by \(f(x) = \sin^4 x - \sin x \) for \(0 \leq x \leq \frac{3\pi}{2} \).

(a) Find the x-intercepts of the graph of \(f \).

(b) Find the intervals on which \(f \) is increasing.

(c) Find the absolute maximum value and the absolute minimum value of \(f \). Justify your answer.

1989 BC3

Consider the function \(f \) defined by \(f(x) = e^x \cos x \) with domain \([0, 2\pi] \).

(a) Find the absolute maximum and minimum values of \(f(x) \).

(b) Find the intervals on which \(f \) is increasing.

(c) Find the x-coordinate of each point of inflection of the graph of \(f \).

1989 AB1

Let \(f \) be the function given by \(f(x) = x^3 - 7x + 6 \).

(a) Find the zeros of \(f \).

(b) Write an equation of the line tangent to the graph of \(f \) at \(x = -1 \).

(c) Find the number \(c \) that satisfies the conclusion of the Mean Value Theorem for \(f \) on the closed interval \([1, 3] \).
1994 AB 1

Let \(f \) be the function given by \(f(x) = 3x^4 + x^3 - 21x^2 \).

(a) Write an equation of the line tangent to the graph of \(f \) at the point \((2, -28) \).

(b) Find the absolute minimum value of \(f \). Show the analysis that leads to your conclusion.

(c) Find the \(x \)-coordinate of each point of inflection on the graph of \(f \). Show the analysis that leads to your conclusion.

1993 AB4/BC3

Let \(f \) be the function defined by \(f(x) = \ln(2 + \sin x) \) for \(\pi \leq x \leq 2\pi \).

(a) Find the absolute maximum value and the absolute minimum value of \(f \). Show the analysis that leads to your conclusion.

(b) Find the \(x \)-coordinate of each inflection point on the graph of \(f \). Justify your answer.

If \(f \) is continuous on \([0, 3]\) and satisfies the following:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0 < (x < 1)</th>
<th>1</th>
<th>1 < (x < 2)</th>
<th>2</th>
<th>2 < (x < 3)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>+</td>
<td>2</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>-2</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>3</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>DNE</td>
<td>-</td>
<td>-3</td>
</tr>
<tr>
<td>(f''(x))</td>
<td>0</td>
<td>-</td>
<td>-1</td>
<td>-</td>
<td>DNE</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

a) Find the absolute extrema of \(f \) and where they occur. Justify your response.

b) Find any points of inflection. Justify your response.