AP Calculus BC-6

Consider the differential equation given by $\frac{d y}{d x}=x(y-1)^{2}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the eleven points indicated.
(b) Use the slope field for the given differential equation to explain why a solution could not have the graph shown below.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=-1$.

(d) Find the range of the solution found in part (c).
(a)

(b) The graph does not have slope 0 where $y=1$.

- or -

The slope field shown suggests that solutions are asymptotic to $y=1$ from below, but the graph does not exhibit this behavior.
(c) $\frac{1}{(y-1)^{2}} d y=x d x$
$-\frac{1}{y-1}=\frac{1}{2} x^{2}+C$
$\frac{1}{2}=0+C ; \quad C=\frac{1}{2}$
$-\frac{1}{y-1}=\frac{1}{2}\left(x^{2}+1\right) ; \quad y=1-\frac{2}{x^{2}+1}$
(d) range is $-1 \leq y<1$

1: zero slope at 7 points with $y=1$ and $x=0$
2
1: negative slope at $(-1,0)$ and $(-1,-1)$
positive slope at $(1,0)$ and $(1,-1)$
steeper slope at $y=-1$ than $y=0$

1: reason

5
: separates variables
: antiderivatives
1: constant of integration
1: uses initial condition $f(0)=-1$
1 : solves for y
$0 / 1$ if y is linear
Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration
Note: $0 / 5$ if no separation of variables

1: answer
$0 / 1$ if -1 not in range

