sonI

tangent line approximation -Class work

1	Ę	-1.5	~1.0	-0.5	ម័	0.5	1.0	1.5
		l						
	\$(1.1)	7		» 3			5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

using the tangent line of f(1) estimate the value of f(1.2)

- 2. Find the equation of the tangent line to y=sinx at the origin, and use it to find an estimation of sin 0.12
- 3. Let f be a differentiable function. Estimate f(2.1) given that f(2)=1 and f'(2)=3
- 4.
 Use differentials and the graph of f to approximate (5) AL91 and (6) A2.54.

AP Calculus AB

Linearization/Local Linearity Section 5.5

AP Questions:

1998 AP Calculus AB Scoring Guidelines

- 4. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - (a) Find the slope of the graph of f at the point where x = 1.
 - (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).

1995 AB3

Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$.

- (a) Find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point (4,-1).
- (c) There is a number k so that the point (4.2,k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
- (d) Write an equation that can be solved to find the actual value of k so that the point (4.2,k) is on the curve.
- (e) Solve the equation found in part (d) for the value of k.

AB?

Let f be the function defined by $f(x) = (1 + \tan x)^{\frac{3}{2}}$ for $-\frac{\pi}{4} < x < \frac{\pi}{2}$.

- (a) Write an equation for the line tangent to the graph of f at the point where x = 0.
- (b) Using the equation found in part (a), approximate f(0.02).