AP Questions:

1998 AP Calculus AB Scoring Guidelines

- 4. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - (a) Find the slope of the graph of f at the point where x = 1.
 - (b) Write an equation for the line tangent to the graph of f at x=1 and use it to approximate f(1.2).

1995 AB3

Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$.

- (a) Find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point (4,-1).
- (c) There is a number k so that the point (4.2,k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
- (d) Write an equation that can be solved to find the actual value of k so that the point (4.2,k) is on the curve.
- (e) Solve the equation found in part (d) for the value of k.

AB?

Let f be the function defined by $f(x) = (1 + \tan x)^{\frac{3}{2}}$ for $-\frac{\pi}{4} < x < \frac{\pi}{2}$.

- (a) Write an equation for the line tangent to the graph of f at the point where x = 0.
- (b) Using the equation found in part (a), approximate f(0.02).

Question 6

\boldsymbol{x}	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	7	-6	-4	-1
f'(x)	7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.

Multiple Choice:

The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at x = 0, is

- (A) 2.00
- (B) 2.03
- (C) 2.06
- (D) 2.12
- (E) 2.24

AP Calculus AB

Linearization/Local Linearity Section 5.5

AP Questions:

1998 AP Calculus AB Scoring Guidelines

- 4. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2+1}{2y}$
 - (a) Find the slope of the graph of f at the point where x = 1.
 - (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate

a)
$$\frac{3(1)+1}{2(4)} = \frac{4}{8} = \frac{1}{2}$$
 b) $y-4 = \frac{1}{2}(x-1)$ $\frac{1}{2}(x) = \frac{1}{2}x + 3.5$ $\frac{1}{2}(x-1) = \frac{1}{2}(x-1)$

1995 AB3

Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$. $-16x + 5y + 5x \frac{dy}{dx} + 3y \frac{dy}{dx} = 0$

(a) Find
$$\frac{dy}{dx}$$
. = $\frac{16 \times -5 \cdot y}{5 \times +3 \cdot y^2}$

$$9m = \frac{16(4) + 5}{20 + 3} = 3$$

- Write an equation for the line tangent to the curve at the point (4,-1). y+1=3(x-4)There is a number k so that the point (4.2,k) is on the curve. Using the tangent line found in part (b), approximate the value of k. K=3(4.2)-13=(-2/5)=-4
- Write an equation that can be solved to find the actual value of k so that the point $-8(4.2)^{2}+5(4.2)4+4^{3}=-149$

Solve the equation found in part (d) for the value of \boldsymbol{k} .

$$-141.12 + 214 + 43 = -149$$

$$43 + 214 + 7.88 = 0$$

$$44 = 373$$

Let f be the function defined by $f(x) = (1 + \tan x)^{\frac{\pi}{2}}$ for $-\frac{\pi}{4} < x < \frac{\pi}{2}$.

- Write an equation for the line tangent to the graph of f at the point where x = 0.
- Using the equation found in part (a), approximate f(0.02).

a)
$$f' = \frac{3}{3}(1+\tan x)^{1/2}(\sec^2 x)$$
 $y-1=\frac{3}{3}(x-0)$ b) $L(x)=\frac{3}{3}(x-0)+1$
 $f'(0)=\frac{3}{3}(1+0)^{1/2}(\sec 0)^2$ $y=\frac{3}{3}x+1$ $L(.02)=\frac{3}{3}(.02)+1$
 $=\frac{3}{3}(1)=\frac{3}{4}$ $f(.02)=\frac{3}{4}(.03)$

b)
$$L(x) = \frac{3}{3}(-02) + 1$$

 $L(.02) = \frac{3}{3}(-02) + 1$
 $f(.02) = \frac{3}{3}(-03) + 1$

Question 6

\boldsymbol{x}	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	7	-6	-4	-1
f'(x)	-7	5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $1.5 \le x \le 1.5$.

oncore up

Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.

$$(1,-4) f'(1) = 5$$

$$y + 4 = 5(x-1)$$

$$y = 5x - 9$$

$$f(1,2) \approx L(1,2) = -3$$

* The graph is concave up since f">0 at x=1,2 so the tangent line is below the graph making the approximation less than the Multiple Choice: actual value. *

The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at x = 0, is

(A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24
$$point(o, a)$$
$$y' = \frac{1}{2} (4 + \sin x)^{-1/2} (\cos x)$$

$$y^{-2} = \frac{1}{4}(x-0)$$

$$y'(0) = \frac{1}{3}(4)^{7/2} \cdot 1$$

$$y(x) = \frac{1}{4}x+2$$

$$y'(x) = \frac{1}{4}(x+2)$$

$$y'(x) = \frac{1}{4}(x+2)$$

 $L(-12) = \pm(-12) + 2 + 2.03$