building falls $y = 16t^2$ feet in the first t seconds. In Exercises 1-4, an object dropped from rest from the top of a tall

- 1. Find the average speed during the first 3 seconds of fall. 48 ft/sec
- 2. Find the average speed during the first 4 seconds of fall. 64 ft/sec

20. $f(x) = x \sin(\ln|x|)$

18. $f(x) = \sin \frac{1}{x}$

16. $f(x) = \frac{x^2 - x}{x}$

- **3.** Find the speed of the object at t = 3 seconds and confirm your answer algebraically. 96 ft/sec
- **4.** Find the speed of the object at t = 4 seconds and confirm your answer algebraically. 128 ft/sec

properties of limits to find the limit. In Exercises 5 and 6, use $\lim_{x\to c} k = k$, $\lim_{x\to c} x = c$, and the

5.
$$\lim_{x \to c} (2x^3 - 3x^2 + x - 1) \ 2c^3 - 3c^2 + c - 1$$

6.
$$\lim_{x \to c} \frac{x^4 - x^3 + 1}{x^2 + 9} \frac{c^4 - c^3 + 1}{c^2 + 9}$$

graphically. In Exercises 7–14, determine the limit by substitution. Support

7.
$$\lim_{x \to -1/2} 3x^2(2x-1) - \frac{3}{2}$$

8.
$$\lim_{x \to -4} (x+3)^{1998}$$
 1

9.
$$\lim_{x \to 1} (x^3 + 3x^2 - 2x - 17)$$
 -15 **10.** $\lim_{y \to 2} \frac{y^2 + 5y + 6}{y + 2}$ 5

11.
$$\lim_{y \to -3} \frac{y^2 + 4y + 3}{y^2 - 3} = 0$$
13. $\lim_{x \to -2} (x - 6)^{2/3} = 4$

14.
$$\lim_{x \to 1/2} \sqrt{x+3} \sqrt{5}$$

In Exercises 15–20, complete the following tables and state what you believe
$$\lim_{x\to 0} f(x)$$
 to be.

rom the top of a tall

15.
$$f(x) = \frac{x^2 + 6x + 2}{x + 1}$$

16. $f(x) = \frac{x^2 - x}{x}$

conds of fall. 48 ft/sec

17. $f(x) = x \sin \frac{1}{x}$

18. $f(x) = \sin \frac{1}{x}$

conds of fall. 48 ft/sec

19. $f(x) = x \sin \frac{1}{x}$

18. $f(x) = \sin \frac{1}{x}$

conds of fall. 48 ft/sec

19. $f(x) = x \sin \frac{1}{x}$

In Exercises 21–24, explain why you cannot use substitution to determine the limit. Find the limit if it exists.

Expression not 21. $\lim_{x \to -2} \sqrt{x - 2} = \frac{10^x - 1}{2}$

20. $f(x) = x \sin (\ln |x|)$

Expression not There is no limit.

21. $\lim_{x \to -2} \sqrt{x - 2} = \frac{1}{2} = \frac{1}{2}$

22. $\lim_{x \to 0} \frac{1}{x^2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

23. $\lim_{x \to 0} \frac{|x|}{x} = \frac{1}{2} = \frac{1}{4} = \frac{1}{4}$

27.
$$\lim_{x \to 0} \frac{y^2 + 5y + 6}{3x^4 - 16x^2} - \frac{1}{2}$$
10. $\lim_{y \to 2} \frac{y^2 + 5y + 6}{y + 2}$
5
29. $\lim_{x \to 0} \frac{(2 + x)^3 - 8}{x}$
112. $\lim_{x \to 1/2} \inf x = 0$
31. $\lim_{x \to 0} \frac{\sin x}{2x^2 - x} - 1$

31.
$$\lim_{x \to 0} \frac{\sin x}{2x^2 - x} - 1$$

30.
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$
 2
32. $\lim_{x \to 0} \frac{x + \sin x}{x}$

33.
$$\lim_{x \to 0} \frac{\sin^2 x}{x} = 0$$

32.
$$\lim_{x \to 0} \frac{x + \sin x}{x}$$
 2
34. $\lim_{x \to 5} \frac{x^3 - 125}{x - 5}$ 75

In Exercises 35 and 36, use a graph to show that the limit does not

35.
$$\lim_{x \to 1} \frac{x^2 - 4}{x - 1}$$

3.
$$\lim_{x \to 2} \frac{x+1}{\sqrt{2}-4}$$

In Exercises 37–42, determine the limit.

37.
$$\lim_{x\to 0^+} \text{int } x = 0$$

38.
$$\lim_{x \to 0^{-}} \operatorname{int} x - 1$$

35. Answers will vary. One possible graph is given by the window [-4.7, 4.7] by [-15, 15] with Xscl = 1 and Yscl = 5. 36. Answers will vary. One possible graph is given by the window [-4.7, 4.7] by [-15, 15] with Xscl = 1 and Yscl = [-15, 15] with Xscl = 1 and Yscl = [-15, 15] with Xscl = [-15, 15] with

24. $\lim_{x \to 0} \frac{(4+x)^2 - 16}{x}$ Expres defines

26. $\lim_{t \to 2} \frac{t^2 - 3t + 2}{t^2 - 4} \frac{1}{4}$

28. $\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x} - \frac{1}{4}$