5.1 Estimating with Finite Sums Calculus

The Area Problem and the Rectangular Approximation Method (RAM) y
(a.k.a. Riemann Sums)

Suppose we wanted to know the area of the region bounded by a curve, the x
— axis, and the lines x = g and x = b, as shown at the right.

The first step is to divide the interval from a to & into subintervals.
(The examples below show 4 and 8 subintervals, respectively.)

After dividing the given interval into subintervals, we can then draw
rectangles using the width of each subinterval as the base.

The height of each rectangle is determined by the function value at a point in
the specific subinterval, and can be determined using 3 different methods.

We could use the left endpoint of each subinterval (called LRAM), the right endpoint of each subinterval (RRAM),
or the midpoint of each subinterval (MRAM).

Example 4: Which method is shown in the two graphs below?
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Example 5: The total area under the curve then is approximately equal to the total area of all the rectangles. Which
of the graphs above gives a better approximation of the area under the curve? Why? How could it be further
improved?

Summary of the Process: A sketch is almost mandatory!
Step 1: Divide (or Partition) the interval into » subintervals.

Step 2: Create # rectangles whose base equals the width of each subinterval and whose height is
determined by the function value at the left endpoint, the right endpoint, or the midpoint of the subinterval.

Step 3: Find the area of all n rectangles and add them together.
Example 6: 1llustrate the use of RRAM and MRAM on the graphs below. (use 4 rectangles)
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5.1 Estimating with Finite Sums Calculus

Example 7: Use 4 rectangles to approximate the area under the graph of y = x*—2x+2 fromx=1tox=3.
Use LRAM, RRAM, and then MRAM.

y y y

Example 8: Using your rectangles as a guide, find each approximation.

a) LRAM =

b) RRAM =

¢) MRAM =

Example 9: It is not necessary to have a graph to estimate the area. Suppose the table below shows the velocity of a
model train engine moving along a track for 10 seconds.

Time Velocity Time Velocity
(sec)  (in./sec)  (sec)  (in./sec)

0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 5 10 0
5 13

a) Using a left Riemann Sum with 10 subintervals, estimate the distance traveled by the engine in the first
10 seconds.

b) Using a Midpoint Riemann Sum with 5 subintervals, estimate the distance traveled by the engine in the
first 10 seconds.



The rate of fuel consumption, in gallons per' minute, recorded during an airplane flighf is given by a
twice-differentiable and strictly increasing function R R
of time . The graph of R and a table of selected
values of R(¢), for the time interval 0 <t<90
minutes, are shown above.

4 Rir)
(minutes) } (gations per minute)

(8) Use data from the table to find an approximation
for R'(45). Show the computations that lead to

3ansys
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your answer. Indicate units of measure. ns: .

(B} The rate of fuel consumption is increasing fastest at time ¢ = 45 minutes. What is the value of
R"(45)? Explain your reasoning.

%0
(c) Approximate the value of j; R(t)dt using a left Riemann sum with the five subintervals indicated

by the data in the table. Is this numerical approximation less than the value of j; sN’R(t)dr: ? .
Explain your reasoning. '
) b
(d) For 0<b<90 minutes, explain the meaning of j; R(t)dt in terms of fuel consumption for the
b
plane. Explain the meaning of % j; R(tydt :mterms of fuel consumption for the plane. Indicate

units of measure in both answers.
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Rocket 4 has positive velocity v(7) after being launched upward from an initial height of 0 feet attime ¢ = 0
seconds. The velocity of the rocket is recorded for selected values of ¢ over the interval 0 < ¢ < 80 seconds, as

shown in the table above. ‘ )
(a) Find the average acceleration of rocket 4 over the time interval 0 < ¢ < 80 seconds. Indicate units of

measure.
(b) Using correct units, explain the meaning of J:)ov(t) dt in terms of the rocket’s flight. Use a midpoint

- : 70
Riemann sum with 3 subintervals of equal length to approximate IlO v(t) dt.

-

[ad

. A car is traveling on a straight road. For _O'S ts Zﬁlseconds, the car’s ‘ ¥(1)
velocity v(¢), in meters per second, is modeled by the piecewise-linear [(4.20) (16,20
function defined by the graph above.

24 24
(a) Find J; v(¢) dt. Using correct units, explain the meaning of Io v(t) dt.

)
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(b) For each of v'(4) and v’(20), find the value or explain why it does not e,
. . . 4 8 12 16 20 24
exist. Indicate units of measure. Time (seconds)

)

(c) Let a(t) be the car’s acceleration at time ¢, in meters per second per second. For 0 < ¢ < 24, write a
piecewise-defined function for a(t).

(d) Find the average rate of change of v over the interval 8 < 7 < 20. Does the Mean Value Theorem guarantee
avalue of ¢, for 8 < ¢ < 20, such that v'(c) is equal to this average rate of change? Why or why not?




/s..\

LESSON 3

The rate at which water flows into a tank, in gallons per hour, is given by a
positive continuous function R of time £. The table below shows the rate at selected values
of t for a 12-hour period.

t (hrs) 0 4 6 8 10 12
R()galmr) | 125 | 13.4 | 139 | 143 | 146 | 148 [ 147

o

1. Usea midpoint Riemann sum with three subintervals to approximate:

e

. . . . A (4 v.(£). "
Particle A moves along a horizontal line with a velocity "4 ( ) where 4 ( ) is a positive
continuous function of f. The time t is measured in seconds, and the velocity is measured

in cm/sec. The velocity Y4 (t) of the particle at selected times is given in the table below.

t (sec) 0 2 5 7 10
v Kemise) | 17 | 68 | 74 [ 156 | 249

1. Use data from the table to approximate the distance traveled by particle A over the
interval 0</ <10 seconds by using a right Riemann sum with four subintervals.
Show the computations that lead to your answer, and indicate units of measure.
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b 4 2 3 5 8 13
1 4 -2 3 &

5. Let f be a function that is twice differcntiable for all real numbers. The table above gives values of f for
selected points in the closed Interval 2 < x < 13.

(a) Bstimate f’(4). Show the work that lezds to your answer.

'Nvalnntc [(3 - 57(x)) . Show the work that teads to your snsvwer.

1
(c) Use aleft Riemann sum with subintervals indicated by the data in the table to approximate L J(x)dx.
Show the work that leads o your answer.

(d) Suppose f'(5) =3 and f°(x) <0 forall x in the closed interval 5 < x < 8. Use the line langent to the
graphof fat x = S to show that f(7) < 4. Use the secant line for the gmph of fon 5 < x < 8 to show

that f(7)2 3.
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t (hours) o | vt | 3| 4| 7| 8] 09
L(f) (people) | 120 | 156 | 176 | 126 | 150 | 80 | ©

2. Concert tickets went on sale at noon (¢t = 0) and were sold out within 9 hours. The number of people waiting
in line to purchase tickets at time ¢ is modeled by a twice-differentiable function L for 0< 1 £ 9. Values
of I(f) at various times ¢ are shown in the table above.

(a) Use the datn in the tuble to estimate the rate at which the number of people waiting in line was changing
at 5:30 P.M. (f = 5.5). Show the computations that lead to your answer. Indicate units of measure.

{b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line
during the first 4 hours that tickets were on sale.

(c) For 0< f < 9, what is the fewest number of times at which L’(f) must equal 0 ? Give a reason for your
answer.

(d) The mate at which tickets were sold for 0< ¢ < 9 is modeled by (1) = 550t¢*/2 tickets per hour. Based on
the model, how many tickets were sold by 3 PM. (f = 3), to the nearest whole number?

:
(minutes)
r'()
(feet per minute)

0 2 5 7 11 ‘12

57 |40 ] 20 | 12 | 06 | OS5

5. The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the
balloon, in feet, is modeled by a twice-differentiable fanction r of time 1, where ¢ is measured in minutes. For
0 <t <12, the graph of r is concave down. The table above gives selected values of the rate of change, (1),
of the madius of the balloon over the time interval 0 < ¢ < 12. The radios of the balloon is 30 feet when ¢ = 5.

(Note: The volume of a sphere of radius r is given by V =§m’.)
{(a) Estimate the radius of the balloon when ! = 5.4 using the tangent line approximation at f = 5. Is your
estimate greater than or less than the true value? Give a reason for your answer.

(b) Find the rate of change of the volume of the balloon with respect to time when ¢ = 5. Indicate units of
feasure.

(c) Usea right Riemann sum with the five subintervals indicated by the data in the table to approximate
I:r’(t) dl. Using correct units, explain the meaning of I:!r'(t)dt in terms of the radius of the balloen.

{d) Is your approximation in part (c) greater than or less than J:zr’(t)dt? Give a reason for your answer.




Lesson 4
Watch Mr Leckie from the 9:22 minute marker to the end
Follow along with attached worksheets- then do page 3

5.2 Definite I | ; i
elinite Integrals http://www.chaoticgolf.com/tutorials_calc_chS.htmlesson 4

Notzation for Definite Integrals

The limit notation we used last is the form we will use to develop Integral notation. As the number of rectangles
goes to infinity, the width of each rectangle, Ax, goes to zero. As we did in the section on differentials, we are

going to use the notation d to represent this infinitely tiny distance.

The summation notation of sigma is going to be replaced with an Integral Sign , f , which looks somewhat like a

giant "S” for sum.

The f (c,) which represented a different function value for each interval is going to be replaced with f(x) since the

x — values are going to be s00000000 close together it's almost as if we are evaluating the function at EVERY x —
value in the interval [g, ). Combining all of this we have the following notation:

[as

We read the notation above as "The Integral of f of x from a to b"

Important A (Actually it's a Theorem): IF the function is continuous , THEN the Definite Integral will exist.
However, the converse, while true some of the time is NOT ALWAYS true.

Using Definite Integrals as Area

We can define the area under the curve y = f(x) from a to b as an integral fromato b ...
... AS LONG AS THE CURVE IS NONNEGATIVE AND INTEGRABLE on the closed interval [a, 4).

Drawing a picture and using geometry is still a valid method of finding areas in this class!

Example I: For each of the following examples, sketch a graph of the function, shade the area you are trying to
find, then use geometric formulas to evaluate each integral.

a) ]3dx b) jl'|x|dx. <) ]‘\/9—x’dx
-2 -3

2



5.2 Definite Integrals ) Calculus

So ... what happens if the “area” is below the x-axis ... as I mentioned before, “area” is inherently positive, but a
Riemann sum ... and therefore an Integral can have negative values if the curve lies below the x-axis.

Example 2: Consider the function f(x)=3—x. Sketch a graph of this function.

a) What is the "AREA" between the curve and the x — axis between x = 4 and x = 8?

8
b) Evaluate f (3-x)dx
4

Example 3: Given f sinx dx = 2, use what you know about a sine function to evaluate the following integrals.
0

x 2% %
a) fsinxdt b) fsinxdx c) fsinxdx
x 0 []
d)fsinxabc e) f(Z +sinx) dx
-% 0



b
1. Graphically speaking, if f(x) is always above the x-axis, what does f f(x)dx mean?

-~

2. Given the graph of f(x) below, answer the following questions: A

b
a) Is f S (x)dx positive, negative, or zero? Why? //\

v

b) Is f S (x)dx positive, negative, or zero? Why?
b

c) Is f S (x)dx positive, negative, or zero? Why?

1
3. Use your knowledge of the graph of y = x*, your understanding of area, and the fact that f x* dx =:l‘- to answer the
0

following: (Draw a sketch for each one!)

A

2) _]x’dx b) [(++3)ax o) [(¥-1)a

0 o

4. Draw a sketch and shade the “area” indicated by each integral, then use geometry to evaluate each integral.

a) yf(—2x+4)dx . b) } 16— x* dx c) ]’(2-|x|)dx

12



5

5. Ifjf(x)dx:l&then f(f(x)+4)dx=?

2

b
6. Use areas to evaluate f 2sds , where aand b are constants and 0 <ag<b

a

. .
7. Which of the following quantities would NOT be represented by the definite integral f 70d: ?
0

A) The distance traveled by a train moving 70 mph for 8 minutes

B) The volume of ice cream produced by a machine making 70 gallons per hour for 8 hours

C) The length of a track left by a snail traveling at 70 cm per hour for 8 hours

D) The total sales of a company selling $70 of merchandise per hour for 8 hours

E) The amount the tide has risen 8 min after low tide if it rises at a rate of 70 mm per minute during that period

8. Express the desired quantity as a definite integral and then evaluate using geometry.

a) Find the distance traveled by a train moving at 87 mph from 8:00 AM to 11:00 AM
b) Find the output from a pump producing 25 gallons per minute during the first hour of its operation.
c) Find the calories burned by a walker burning 300 calories per hour between 6:00 PM and 7:30 PM.

d) Find the amount of water lost from a bucket leaking 0.4 liters per hour between 8:30 AM and 11:00 AM.

9. Draw a sketch for the area enclosed between the x-axis and ﬂle graph of y=4—x* fromx=-2tox=2.

a) Set up a definite integral to find the area of the region.

b) Use your calculator to evaluate the integral expression you set up in part a.



