Chapter 3. Review for test

(35) (35)

- 1. The graph of the first derivative of a function is shown above. At what values of x does the function, f(x), have relative extrema? Justify completely.
- 2. At what values of x does the function, I(x), have points of inflection? Justify completely.

- Let f(x) be the function defined by $f(x) = k + 12x + 3x^2 2x^3$, where his a postant.
- (a) On what interval(s) is the function increasing? Justify your answer.

The state of the s

ANU MET

If the relative maximum value of f is 30; then what is the value of R? [Justify]

9

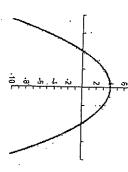
Find the interval where the function / is concave up. [Justify]

<u>ଚ</u>

- f(25)=10. And, let g(x) be the function given by g(x)=f(f(x)). Let f be a twice-differentiable function such that f(10)=25 and
- (a) Explain why [using Calculus] there must be value c, 10 < c < 25, such that

- value k, 10 < k < 25, such that g''(k) = 0. Show that g'(10) = g'(25). Use this result to show that there must be a

Compare the values of f(0), f'(0), f''(0)



graph of 1

 (\mathcal{D}) The table below gives values of the velocity, $\nu(\mathfrak{c})$, of a Interi [An "interi" is sort of like a zombie but made by the Dark Lord] at selected times.

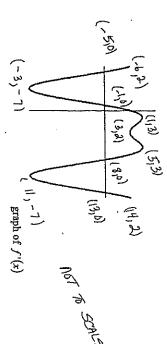
298AU (1)a	t (sec)
5	0
-1	ప
ĊΊ	6
10	1:0
ដ	1 5

- (a) Is there a time during 0 < t < 15, that the velocity is equal to 9 m/sec Justify completely.
- . (b) Find an appreximation for the acceleration at time $t \approx 2$ and indicate units, [Show all work]

<u>6</u> Show that there must be a time interval such that the acceleration, ∂n is equal to zero

My Chapter & Graph Handout 1

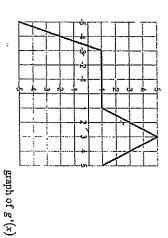
1. Let f(x) be a differentiable function. The graph of f'(x), the first derivative, is shown below.



(a) Use the graph of f'(x) to locate the x-value(s) of all relative extrema of f [Justify completely]

(b) Use the graph of f'(x) to locate the x-value(s) of all points of inflection of f [Justify completely]

Let g(x) be a differentiable function. The graph of g'(x), the first derivative of g(x) is shown below.

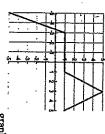


On what interval(s), does the graph of g increase? [Justify completely]

æ

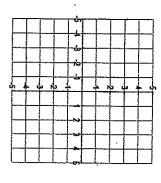
(b) Use the graph of g'(x) to find the x-value(s) of any relative extrema of g [Justify completely]

Question 2 continued



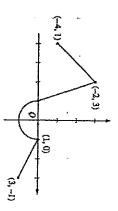
graph of g'(x)

(c) On the axes provided below, draw an accurate graph of g''(x)



(d) On what interval(s) is the graph of g(x) concave down? [Justify completely]

The graph below is the graph of g'(x) which is defined for the closed interval [-4,3]

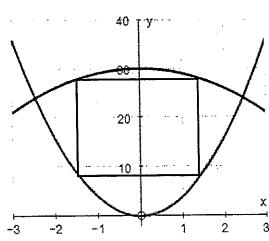


graph of g'(x)

- (A) Identify the critical values of g [not g'(x)] and classify them as relative minima, maxima, or neither. Justify fully.
- Use a limit to prove that the g''(-2) does not exist.

- 13. Suppose $\frac{d^2y}{dx^2} = x^3 4x^2$. Justify each response below.
 - a) Where is y concave up?
 - b) Where is y concave down?
 - c) Are there any inflection points on y? If so, where?
- 14. [Calculator Allowed] The derivative of h(x) is given by $h'(x) = 2\cos(x \frac{\pi}{6}) + 1$ on the interval $\left[-2\pi, 2\pi\right]$. Justify EVERY response.

- a) Where is h(x) increasing?
- b) Where is h(x) concave down?
- c) Find the x-coordinates of all extrema of h(x) on the interval $[-2\pi, 2\pi]$.
- d) Does h(x) have a point(s) of inflection? If so, where?
- 15. A rectangle is inscribed between the parabolas $y = 4x^2$ and $y = 30 x^2$ as shown in the picture. What is the maximum area of such a rectangle? Justify your response using CALCULUS.



16. USE CALCULUS: Find the maximum area of a rectangle inscribed under the curve $f(x) = \sqrt{16-x^2}$.

17. [Calculator Allowed] USE CALCULUS: A rectangle is inscribed under one arch of $y = 8\cos(0.3x)$ with its base on the x-axis and its upper two vertices on the curve symmetric about the y-axis. What is the largest area the rectangle can have?

18. The function f is continuous on [0, 3] and satisfies the following:

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3
f	0	Neg	-2	Neg	0	Pos	3
f ¹	-3	Neg	0	Pos	DNE	Pos	4
f "	0	Pos	1	Pos	DNE	Pos	0

- a) Find the absolute extrema of f and where they occur.
- b) Find any points of inflection.
- c) Sketch a possible graph of f.

Chadasa Friggs of L. Staff Com. The months of

THE STEER STATE OF THE STATE OF 1961年

The state of the state of

(6,7) (FR +1, #2)

1. The graph of the first derivative of a function is shown above. At what values of x does the function, f(x), have relative extrema? Justify completely.

that mor at x=7 because f(x) charged - tot

Justify completely. At what values of x does the function, f(x), have points of inflection?

because \$11(x)=0 9,1,8,6=2 and consavity charged

3. Let f(x) be the function defined by $f(x) = k + 12x + 3x^2 - 2x^3$, where k is a

(a) On what interval(s) is the function increasing? Justify your answer.

(b) If the relative maximum value of f is 30, then what is the value of k7 [Justi67]

30 = K+12(2) + 3(4) - 2(8)

K=10

led max at x=3 because fix) charged + to- (c) Find the interval where the function 1 is concave up [Justify] (10) a breamer files a pos 9+メヤーニ(か)な」と -6(2x-1) 2/110

なっかの

- 4. Let f be a twice-differentiable function such that f(10) = 25 and f(25)=10. And, let g(x) be the function given by g(x)=f(f(x)).
- (a) Explain why [using Calculus] there must be value $C_1 < C < 25$, such that

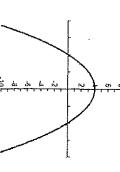
By M.V.T three the slope is +1 from end to end alinterval add the slope since it a continuous 1=51=01-5E 3(25) = 12 3(26) = 10

(b) Show that g'(10) = g'(25). Use this result to show that there must be a value k, 10 < k < 25, such that g''(k) = 0.

 \mathfrak{S} Compare the values of f(0), f'(0), f''(0)

h=(0)5

0 = (0)3



5/1/0) = -

graph of f

 $m{O}$ The table below gives values of the velocity, $m{v}(t)$, of a Inferi (An "inferi" is sort of like a zombie but made by the Dark Lord] at selected times.

v(t)	t (sec	
m/sec	્ર	
5	0	
1		
-1	3	
5	6	
10 18	10	
13	15	

(a) Is there a time during 0 < t < 15, that the velocity is equal to 9 m/secgross from 5 to 10, I must have passed through 9

(b) Find an approximation for the acceleration at time t = 2 and indicate units. [Show all work]

Show that there must be a time interval such that the acceleration, $a(\theta_i)$ is equal to zero

Since It a continuous

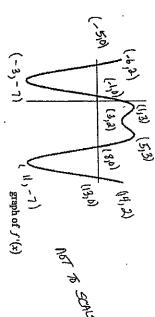
Since on from their must

by Polles than there must

be a place where
$$a(\pm) = 0$$

My Chapter 3 Graph Handout 1

1. Let f(x) be a differentiable function. The graph of f'(x), the first derivative, is shown below.

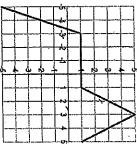


- (a) Use the graph of f'(x) to locate the x-value(s) of all relative extrema of f [Justity completely] x = -5, -1, 8, 13 since f'(x) = 0 at thuse values and f' changes signs at those values (the 1st derivative test).
- (b) Use the graph of f'(x) to locate the x-value(s) of all points of inflection of f [Justity completely] x = -3, 1, 3, 5, 11

 Since f''(x)=0 for twose values and f' changes

 sign at thuse values (2nd der. test).

Let g(x) be a differentiable function. The graph of g'(x), the first derivative of g(x) is shown below.



graph of g'(x)

- (a) On what interval(s), does the graph of gincrease? [Justify completely]

 Qraph of g !NCreases when g'>0, so the intervals

 are (-3.5,5]
- (b) Use the graph of g'(x) to find the x-value(s) of any relative extrema of g

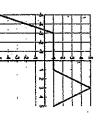
 [Dustity completely]

 There is a relative minimum when X=-3.5,

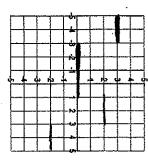
 Since g'(-3.5)=6 and g'(x) changes

 from negative to positive values at that

K-Value (1st der. test)



On the axes provided below, draw an accurate graph of g''(x)

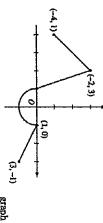


(d) On what interval(s) is the graph of g(x) concave down? [Justify

is concave dumn when $x \in (3,5)$

since 9" <0 for those x-values

The graph below is the graph of g'(x) which is defined for the closed



graph of g'(x)

(A) Identify the critical values of g [not g'(x)] and classify them as relative minima, maxima, or neither. Justify fully. CV $\chi = -1$

(B) Use a limit to prove that the g"(-2) does not avier 7 :- 1 Palmax because g'(x) changed pot

10,6 pm 7 + (1)6 pm

12. Suppose that functions f and g and their first derivatives have the following values at x = -1 and x = 0.

x	f(x)	g(x)	f'(x)	g'(x)
-1.	Q	-1	2.	1
0	-1	–3	-2	.4

Find the first derivative of the following combinations at the given value of x.

a)
$$f(g(x))$$
 at $x = -1 \implies f'(g(x)) \cdot g'(x)$
= $f'(x) \cdot g'(x)$
= $g'(x) \cdot g'(x)$
= $g'(f(x)) \cdot f'(x)$
= $g'(x) \cdot f'(x) = y \cdot 2 = x - 2$

13. Find
$$\frac{dy}{dx}$$
 if $x^2y + 3y^2 = x - 2$

$$\int \frac{dy}{dx} = \frac{1-2xy}{x^2+6y}$$
15. Suppose $y = x^3 - 3x$. [No Calculator]

a) Find the zeros of the function. $x^3 - 3x = 6$

b) $f^2(x)g^3(x)$ at x=0 $[f(0)]^{2} \cdot 3[g(0)]^{2} \cdot g'(0) + [g(0)]^{2} \cdot 2[f(0)] \cdot f'(0)$ $= (-1)^{2} \cdot 3(-3)^{2} \cdot (4) + (-3)^{3} \cdot 2(-1)^{2}(-2) = 0$ d) g(x+f(x)) at x=0 $= q'(0+f(0)) \cdot [1+f'(0)]$ $= q'(0+-1) \cdot [1+f'(0)]$ $= q'(-1) \cdot [1+f'(0)]$ 14. Find $y^{is}(x)$ if $y = (4x+1)^{10}$ y'= 10 (4x+1)9.4 = 40 (4x+1)9 4"= 360 (4x+1) 8.4 = 1440 (4x+1) y" = 11520 (4x+1) .4 = 80640 (4x+1)

b) Determine where y is increasing or decreasing and justify your response.

y is increasing on (-00,-1) u [1,00) since y'70 y'= 3x - 3 = 3 (x - 1) = 3 (x + 1) (x - 1) c) Determine all local extrema and justify your response. ly is decreasing on [11] since y'Lo

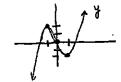
There is a rel, max at x = -1 since y changed rights from + to -. Pel max = 2 There is a relimin at x=1 since y' changed signs from - to + Relimin = -2

d) Determine the points where y is concave up or concave down, and find any points of inflection. Justify your responses.

Justify your responses.

$$y'' = 6x$$
 $y'' = 6x$
 y''

e) Use all your information to sketch a graph of this function.



A A IF YOU DON'T USE CALCULUS FOR #20 \$ 21 YOU WON'T GET CREDIT ON THE TEST 20. Find the maximum area of a rectangle inscribed under the curve $f(x) = \sqrt{16-x^2}$. A= 2xy = 2x 116-x2 Donain: [0,4] A' = 2x · [1/2 (16-x2)] + J16-x2 · (2) A 0 16 0 MAX AREA = 16 $A^{\frac{1}{2}} \frac{-2x^{2}}{\sqrt{l_{0}-x^{2}}} + 2\sqrt{l_{0}-x^{2}} = \frac{-2x^{2} + 2(16-x^{2})}{\sqrt{l_{0}-x^{2}}} = \frac{-2x^{2} + 32 - 2x^{2}}{\sqrt{l_{0}-x^{2}}} = \frac{32 - 4x^{2}}{\sqrt{l_{0}-x^{2}}}$ 32-4x =0 \$252=X 21. [Calculator Allowed] A rectangle is inscribed under one arch of $y = 8\cos(0.3x)$ with its base on the x-axis and its upper two vertices on the curve symmetric about the y-axis. What is the largest area the rectangle can have? Donah : [0, 5.236] my A=2xy = 2x . 8 cos (8x) = 16x cos (.3x) A'=0 at X= 2.86.77786... B 29, 925

GREE AS B

5.236, 0 A'= 16x. [sin 63 id . (.3)] + cos(.3x).[16] MAX AREA = 29.925 22. The function f is continuous on [0, 3] and satisfies the following: 2 < x < 31 < x < 20 < x < 13 0 -2 Neg Pos Neg 4 Pos 0 Pos DNE -3 Neg DNE Pos 1 Pos Pos a) Find the absolute extrema of f and where they occur.

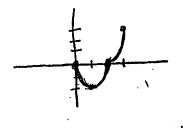
b) Find any points of inflection.

where f" Changes signs ... NONE, f" is always for itive

c) Sketch a possible graph of f.

(0,0)
(1,-2)
(2,0)
(3,3)

F. DEC INC INC



NOTE ... POINTY PLACE Q X=2 ble f'(2) DIVE

Go back and Review the questions from your assignments in this chapter ... especially those in section 4.3.

Understand your notecards!