

Show all work/steps. Justify fully.

Graph of f

A continuous function f is defined on the closed interval $-10 \le x \le 10$. The graph of f consists of a semi-circle and four line segments as shown in the figure

above. Let g be the function defined by $g(x) = \int f(t)dt$.

(a) Find
$$\lim_{x\to 5} f(x) = 4$$

Find the average rate of change for f on the interval $-10 \le x \le 10$ $0 \le x \le 10$ Does the Mean Value Theorem guarantee a value c, -10 < c < 10 such that (b)

f'(c) will equal the average rate of change from part (b)? $N_0 \rightarrow N_0 + d_1 + d_2$

Show [using Calculus] that f'(6) does not exist The Ufthand derivative ± 1 Find the value of g(-3) = 0

(e)

Find the value of g(3) $\frac{QT}{2}$ **(f)**

Find the value of g(-10) = -(9+24) =(g)

Find the value of g(10) $\int_{-3}^{10} f(+)dt = \frac{9\pi}{2} + \frac{1}{2}(6)(6) - \frac{1}{2}(1)(2)$ $\frac{9\pi}{2} + 18 - 1 = \frac{9\pi}{2} + 17$ (h)

