Day 1-assign books, review summer assignment Do Now

Simplify the following expressions:
4. $\ln e^{8}+\ln e+\ln 1$
5. $\tan ^{-1}(1)+\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
6. $\sin \left(\frac{3 \pi}{2}\right)+\cos \left(\frac{\pi}{3}\right)$
7. $\cos ^{2}(\pi)+\sin ^{2}(\pi)$
8. $\sqrt{x}\left(x^{7}-x^{\frac{11}{2}}+\sqrt[3]{x}\right)$
9. $\frac{x^{4}+2 x^{2}+1+\sqrt{x}}{\sqrt[3]{x}}$

Simplify and state the domain of the following expression:
10. $\frac{x^{3}-64 x}{x^{2}+7 x-8}$

Day 2- summer assignment test

Contents

Lesson 1 3
Lesson 2 5
Lesson 3 7
Lesson 4 10
Lesson 5 12
lesson 6 Error! Bookmark not defined.
Lesson 7 16
lesson 8 18
Lesson 9 19
Lesson 10 21
Test CH 1 23

website btcalculove.weebly.com
 For Chapter 2 assignments, worksheets and solutions

Finding Limits graphically
CW- p. 67 \#43,44
HW p. 66 \#15,16 p. $6745-50$ p. 68 \#57,58

Definition of a Limit- The (y) value that a function approaches as x approaches some number, (not what the actual value is at that point)

Limit $\mathrm{f}(\mathrm{x})$ look in both directions $\mathrm{X} \rightarrow \mathrm{C}$

WHEN LIMITS FAIL ... 3 WAYS

The $\lim _{x \rightarrow c} f(x)$ does not exist when there is no number satisfying the definition.

1. $f(x)$ approaches a different numbers from the right and left.

$$
\text { Example: } \lim _{x \rightarrow 0} \frac{|x|}{x}
$$

2. $f(x)$ increases or decreases without bound as x approaches c.

$$
\text { Example: } \lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}
$$

3. $f(x)$ oscillates between two fixed values as x approaches c.

$$
\text { Example: } \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

1. Find the limit of $f(x)$ as x approaches -5
2. Find the limit of $f(x)$ as x approaches -3
3. Find the limit of $f(x)$ as x approaches 3

Find
4. $f(-5)$
5. $f(-3)$
6. $f(3)$

7. $\lim f(x)$
$x \rightarrow 0$
8. $\lim \mathrm{f}(\mathrm{x})$
$x \rightarrow-6$
9. $\lim _{f(x)} f$

Using your graphing calculator- (use table, table set and value button to help with homework

$$
\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}
$$

Lesson 2
p. 68 \#60 (no need to graph)

HW WS selected problems (4,5,7,8,9,10,11)

$$
f(x)= \begin{cases}-x+1, & 0 \leq x<1 \\ 1, & 1 \leq x<2 \\ 2, & x=2 \\ x-1, & 2<x \leq 3 \\ -x+5, & 3<x \leq 4\end{cases}
$$

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 3\\
}} f(x) \\
& \lim _{\substack{x \rightarrow 1}} f(x) \\
& \lim _{x \rightarrow 2} f(x)
\end{aligned}
$$

Use your calculator to find- then we must memorize

$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
limit $\quad \sin x$
$\mathrm{x} \rightarrow 0 \quad \mathrm{x}$
using the above- find the limits
$\lim _{x \rightarrow 0} \frac{\tan x}{x}$
$\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
$\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{6 x}$

Lesson 3

Go over Homework

Limits Analytically /algebraically HW- Worksheet finding limits analytically

HOW TO EVALUATE A LIMIT ...

\#1: Graphically: Graph the function and see where it goes
\#2: Numerically: Make a table of values very close to the value you want to evaluate ... (be sure to use numbers to the right AND to the left whenever possible)
\#3: Substitution: Just plug in the value where you want to evaluate the limit.
If you get $\frac{0}{0} \ldots$ DO SOMETHING ELSE \ldots !
\#4: Algebraically:

- Factor the numerator and denominator and cancel any like factors.
- Multiply by a factor of 1 (Includes rationalizing the numerator)
- Simplify the equation use algebraic properties and/or trigonometric identities.

Use Direct Substitution

put the limit (c) into the equation
If \#/\# it is the limit
If $0 / 0 \quad$ it often has a limit, you must do some workFactor, conjugates...
If \#/0 limit never exists DNE (because you can't divide by 0)
If $0 / \#$ limit is 0

Find limit without using a calculator

1. $\lim _{x \rightarrow 1} \frac{x+1}{x-1}$
2. $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-4}$
3. $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$
4. $\lim _{x \rightarrow 0} \frac{5 x^{3}+8 x^{2}}{3 x^{4}-16 x^{2}}$
5. $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}-3}$
6. $\lim _{x \rightarrow e} \ln 1+\ln x$
7. $\lim _{x \rightarrow \frac{\pi}{2}} x \sin x$
8. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
9. $\lim _{x \rightarrow 0} \frac{\frac{3}{4+x}-\frac{3}{4}}{x}$

THEOREM 1.2 PROPERTIES OF LIMITS

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
$$

1. Scalar multiple: $\quad \lim _{x \rightarrow c}[b f(x)]=b L$
2. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
3. Product:

$$
\lim _{x \rightarrow c}[f(x) g(x)]=L K
$$

4. Quotient: $\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$, provided $K \neq 0$
5. Power:

$$
\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}
$$

Lesson 4
Limits as you go to infinity- answers should say DNE $\pm \infty$
CW -WS 3.5 \#13,19-26,29,31, HW- book p. 76-77 \#27,29, 35-38 , 61-63
Only applies to limits $x \rightarrow \pm \infty$
-Highest degree in denominator getting closer to 0 , limit $=0$
-Equal degree in numerator and denominator-limit is the leading coefficients
-Highest degree in numerator; limit DNE because it is going $+\infty$, or $-\infty$ (look at end behavior)

1. $\lim _{x \rightarrow \infty} x^{3}$
2. $\lim _{x \rightarrow-\infty} x^{3}$
3. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x}{x+1}$
4. $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-4 x}{x+1}$
5. Limit $\frac{2 x}{x^{2}+5}$ $\mathrm{x} \rightarrow \infty$
6. Limit $\frac{3 x^{3}+2 x^{2}}{5 x^{3}+1}$
$\mathrm{x} \rightarrow \infty$
7. Limit $\frac{x^{3}+5 x+2}{x-1}$
$\mathrm{X} \rightarrow \infty$
8. Limit $\frac{3 x^{3}+2 x^{2}}{5 x^{3}+1}$
$x \rightarrow-\infty$
9.

Find $\lim _{x \rightarrow \infty} \frac{5 x+\sin x}{x}$.

Use this guideline, these limits seem reasonable when you consider that for large values of x, the highest power term is the most influential in determining the limit.
When x goes to ${ }^{+\infty}$, then $x>0$, which implies that $|x|=x$. Hence

$$
\lim _{x \rightarrow+\infty} f(x)=\frac{\sqrt{4+0}}{3+0}=\frac{2}{3} .
$$

When x goes to ${ }^{-\infty}$, then $x<0$, which implies that $|x|=-x$. Hence

$$
\lim _{x \rightarrow-\infty} f(x)=-\frac{\sqrt{4+0}}{3+0}=-\frac{2}{3}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{3 x-2}{\sqrt{2 x^{2}+1}}\right) \\
& \lim _{x \rightarrow-\infty}\left(\frac{3 x-2}{\sqrt{2 x^{2}+1}}\right)
\end{aligned}
$$

EXAMPLE 2 Finding a Limit as x Approaches ∞

Find $\lim _{x \rightarrow \infty} f(x)$ for $f(x)=\frac{\sin x}{x}$.

EXAMPLE 3 Using Theorem 5

Find $\lim _{x \rightarrow \infty} \frac{5 x+\sin x}{x}$.

SOLUTION

Notice that

$$
\frac{5 x+\sin x}{x}=\frac{5 x}{x}+\frac{\sin x}{x}=5+\frac{\sin x}{x}
$$

So,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x+\sin x}{x} & =\lim _{x \rightarrow \infty} 5+\lim _{x \rightarrow \infty} \frac{\sin x}{x} & & \text { Sum Rule } \\
& =5+0=5 . & & \text { Known values }
\end{aligned}
$$

Now Try Exercise 25.

Lesson 5
Go over HW- (p. 76\#35 with calc and end behavior)
CW Leckies review sheet
HW- reverse classroom continuity

Find the limit

$\lim _{x \rightarrow \infty} e^{x}$

$$
\lim _{x \rightarrow \infty} \frac{x+e^{-x}}{X}
$$

Draw a graph which has the following attributes:
(a) $\lim _{x \rightarrow-2} f(x)=3$
(f) $\lim _{x \rightarrow 5^{-}} f(x)=5$
(b) $f(-2)=1$
(g) $\lim _{x \rightarrow 5^{+}} f(x)=1$
(c) $\lim _{x \rightarrow-4} f(x)=\infty$
(h) $f(5)=1$

Rules for Horizontal Asymptotes:

- $\mathrm{HA}=0$
- Example: $f(x)=\frac{3 x^{3}+7 x}{-2 x^{5}+18 x^{4}-3 x} \quad H A=y=0$

3: The degree of the numerator is greater the degree of the denominator

- HA $=\infty$ or $-\infty$
- Example: $f(x)=\frac{18 x^{3}}{2 x^{2}+7} \quad H A=y=D N E$
$-\lim _{x \rightarrow \infty} f(x)=\infty$
$-\lim _{x \rightarrow-\infty} f(x)=-\infty$

Continuous Functions (reverse classroom the night before)
p. 84 \#1-5, 11-18,
p. 85 \#19-22, 47,48
p. 86\# 56-59

Definition of Continuity: Functions are continuous at c if $1 \mathrm{f}(\mathrm{c})$ is defined
$2 \lim _{x \rightarrow c} f(x)$ exists
$3 \lim _{x \rightarrow c} f(x)=f(c)$
Example 1 - Given the graph of $f(x)$, shown below, determine if $f(x)$ is continuous at $x=-2 \quad x=0 \quad \& \quad x=3$
if not give the reason why it's not

$\mathrm{f}(-2)$
$\mathrm{f}(0)$
f(3)

Find the x values at which the function is not continuous. Is it removable or non removable

1. $f(x)=\frac{1}{x}$
2. $\mathrm{g}(\mathrm{x})=\frac{x^{2}-1}{x-1}$
can be rewritten as $\mathrm{g}(\mathrm{x})=\frac{(x+1)(x-1)}{x-1}$
it is discontinuous at $x=1$ it is removable discontinuity

Lesson 7

Making functions continuous, IVT worksheet
CW/HW - WS 2.3 p. 85 \#47-50
$\lim \xrightarrow{x}$
${ }_{x \rightarrow 1} \ln x$

What value of B would make this function continuous?
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}3 x+B, & x \leq 5 \\ x^{2}-1, & x>5\end{array}\right\} \quad f(x)=\left\{\begin{array}{cc}\frac{x^{2}-9}{x-3}, & x \neq 3 \\ b, & x=3\end{array}\right.$

Let a and b represent real numbers. Define

$$
f(x)= \begin{cases}a x^{2}+x-b, & x \leq 2 \\ a x+b, & 2<x<5 . \\ 2 a x-7, & x \geq 5\end{cases}
$$

(a) Find the values of a and b such that f is continuous on the entire real number line.
(b) Evaluate $\lim _{x \rightarrow 3} f(x)$.
(c) Let $g(x)=\frac{f(x)}{x-1}$. Evaluate $\lim _{x \rightarrow 1} g(x)$.

An example of the intermediate value theorem
If you are 5 ft on your $13^{\text {th }}$ birthday and on your $14^{\text {th }}$ birthday you are $5^{\prime} 6^{\prime \prime}$ at some time between $13 y$ yrs and $14 y r s$ you had to be $5^{\prime} 4$ " (or anything else between 5 ft and $5^{\prime} 6^{\prime \prime}$

Intermediate Value Theorem-Is an existence theorem- it will not provide a solution. It just tells us of the existence of a solution

EX. $f(x)=x^{3}-x-1$. Use IVT to show that there is at least one zero (root) on the interval $[1,2]$

This is our answer:
Since $f(x)$ is continuous on the interval $[1,2]$ and $f(1)=-1$ and $f(2)=5$, IVT guarantees there is a c between 1 and 2 where $f(c)=0$

Explain why the function has a zero in the specified interval

1. $f(x)=\frac{1}{16} x^{4}-x^{3}+3$ interval $[1,2]$
2. $f(x)=x^{3}+3 x-2$ interval $[0,1]$

Verify that IVT applies to the indicated interval and find the value of c guaranteed by the theorem
3. $f(x)=x^{2}+x-1$ interval $[0,5] \quad f(c)=11$
4. $f(x)=x^{2}-6 x+8$ interval $[0,3] \quad f(c)=0$

lesson 8

CW multiple choice problems
Go over how- AP style test on Tuesday

1. Use the Intermediate Value theorem to explain why the function $f(x)=x^{2}+2 x-1$ must have at least one root on the interval $[-1,1]$
2.

The graph of a function f is shown above. If $\lim _{x \rightarrow b} f(x)$ exists and f is not
continuous at b, then $b=$ continuous at b, then $b=$
3. What is the value of k to make this a continuous function?

$$
h(x)=\left\{\begin{array}{l}
\frac{k}{x^{2}}, x<-2 \\
9-x^{2}, x \geq-2
\end{array}\right.
$$

Lesson 9

Go over last night's homework
Cw - multiple choice
HW-review worksheet

1

x	0	1	2
$f(X)$	1	k	2

The function f is continuous on $[0,2]$ and has values given in the table above. The equation $f(x)=\frac{1}{2}$ has at least two solutions in the interval [0,2] if $k=$
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
(E) 3
2. Find the value of a and b that makes this function continuous

$$
f(x)=\left\{\begin{array}{c}
x^{2}-5 x+3, x<-1 \\
a x+b,-1 \leq x \leq 4 \\
11-3 x, \quad x>4
\end{array}\right.
$$

3
If f is continuous on $[-2,4]$ and $f(-2)=5, f(0)=-3$, and $f(4)=711$, then according to the Intermediate Value Theorem, how many zeroes are guaranteed on the closed interval $[-2,4]$
(A) none
(B) one
(C) two
(D) three
(E) four

Functions are continuous at c if $1 \mathrm{f}(\mathrm{c})$ is defined
$2 \lim _{x \rightarrow c} f(x)$ exists
$3 \lim _{x \rightarrow c} f(x)=f(c)$

Lesson 10
Review problems p. 96-97 or from Mellina website additional reviewmellinamathclass.com AP Style test tomorrow- MC and FRQ cw- problems below- and review of homework

FR1. On the axes provided below, sketch a graph of a function that has all of the following attributes listed below:
I. $\lim _{x \rightarrow 3} f(x)=4$
II. $\quad f(3)=-2$
III. $\lim _{x \rightarrow-3} f(x)=\infty$

FR2. $\quad f(x)$ and $g(x)$ are continuous functions for all $x \in$ Reals. The table below has values for the functions for selected values of x. The function $h(x)=g(f(x))+2$.

x	$f(X)$	$g(x)$
1	3	4
3	9	-10
5	7	5
7	11	25

Explain why there must be a value c for $1<c<5$ such that $h(C)=0$.

FR3. Find a such that the function $f(x)=\left\{\begin{array}{ll}\frac{4 \sin x}{x}, & x<0 \\ a+15 x, & x \geq 0\end{array}\right.$ is continuous for all real numbers.
pulI.
FRI. On the axes provided below, sketch a graph of a function that has all of the following attributes listed below:

III.

FR. $f(x)$ and $g(x)$ are continuous functions for all $x \in$ Reals. The table below has values for the functions for selected values of x. The function $h(x)=g(f(x))+2$.

x	$f(x)$	$g(x)$
1	3	4
3	9	-10
5	7	5
7	11	25

$$
\begin{aligned}
h(1) & =g(f(1))+2 \\
& =g(3)+2 \\
& =-10+2 \\
h(5) & =g(f(5))+2 \\
& =g(7)+2 \\
& =25+2
\end{aligned}
$$

Explain why there must be a value c for $1<c<5$ such that $h(c)=0$.
By IUT there is a $c, 1<c<s$, SUEH That $h(1)<h(c)<h(s)$ which means That There is a $c, 1<c<5$) such ThaT $-8<h(c)<27$. Hence, There is an $h(c)=0$ for $1<c<5$

FR3. Find a such that the function $f(x)=\left\{\begin{array}{cc}\frac{4 \sin x}{x}, & x<0 \\ a+15 x, & x \geq 0\end{array}\right.$ is continuous for all real numbers.
need $f(0)=\lim _{x \rightarrow 0} f(x)$

$$
\begin{array}{lr}
\lim _{x \rightarrow 0^{-}} f(x)=4 & \text { Hence, } \\
\lim _{x \rightarrow 0^{+}} f(x)=a & a=4
\end{array}
$$

How do you find the limits- analytically, graphically, and table
Direct Substitution
put the limit (c) into the equation
If \#/\# it is the limit
If $0 / 0$ it often has a limit, you must do some work- Factor, conjugates...
If \#/0 limit never exists DNE
If $0 / \#$ limit is 0

Vertical asymptotes occur where the denominator $=0$
ie- set the denominator $=0$, solve for x

Horizontal asymptotes occur-
Highest degree in denominator getting closer to 0 , horizontal asymptote at $\mathrm{y}=0$
Equal degree in numerator and denominator-horizontal asymptote is the leading coefficients

Highest degree in numerator-no horizontal asymptote
Whenever there is a vertical asymptote you have a limit of $+\infty$ or $-\infty$

Test CH 1

