
AP Calculus AB Review Sheet for Chapter 3 test

- 1. A spring is bobbing up and down so that its position at any time $t \ge 0$ is given by $s(t) = -4\sin t$.
 - a) What is the initial position of the spring?
 - b) Which way is the particle moving to start? Justify your response.
 - c) At $t = \frac{5\pi}{4}$, is the spring moving up or down? Justify your response.
 - d) Is the spring speeding up or slowing down at $t = \frac{5\pi}{4}$? Justify your response.
- 2. If $y = \sec x$, find $\frac{d^2y}{dx^2}$.
- 3. If $x(t) = t^2 8t + 12$ is a position of a particle moving along the x axis at time t, then
 - a) Find the average velocity for the first 3 seconds.
 - b) Find the velocity at t = 4 seconds.
 - c) When is the object stopped?
 - d) When is the acceleration of the object 0?

- e) When does the object change direction?
- f) When does the object slow down?
- g) When is the object moving left?

- $4. \lim_{h\to 0} \frac{\sin(x+h)-\sin x}{h} =$
- A) 0
- B) 1
- C) $\sin x$
- D) $\cos x$
- E) nonexistent
- 5. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0, 1) is
- A) y = 2x + 1
- B) y = x + 1
- C) y = x
- D) y = x 1
- E) y = 0

- 6. If $y = \tan x \cot x$, then $\frac{dy}{dx} =$
- A) $\sec x \csc x$
- B) $\sec x \csc x$
- C) $\sec x + \csc x$
- D) $\sec^2 x \csc^2 x$ E) $\sec^2 x + \csc^2 x$
- 7. A bug begins to crawl up a vertical wire and it's velocity at time t is given in the graph below. Find:
- a) When does the particle change direction?
- b) When is the particle moving down?
- c) Is the particle speeding up or slowing down at t = 6.5?

8. [Calculator] A particle moves along a line so that at time t, $0 \le t \le \pi$, its position is given by $s(t) = -4\cos t - \frac{t^2}{2} + 10$. What is the velocity of the particle when its acceleration is zero?

- A) -5.19
- B) 0.74
- C) 1.32
- D) 2.55
- E) 8.13

9. If
$$f(x) = \frac{x}{\tan x}$$
, then find $f'(2)$.

10. [Calculator]. Find the equation of the tangent line to the graph of $f(x) = (4-\sin x)^2$ at x = 0.

11. Find
$$\lim_{x \to \frac{\pi}{4}} \frac{\sec x - \sec(\frac{\pi}{4})}{x - \frac{\pi}{4}}$$
. This is a non-calculator question!! THINK!

12. Find y' if y =
$$4e^x + 10\ln x - \csc x + \sqrt[3]{x^2} + \frac{8}{x^2} + 4x - 100$$

13. Given the data in the table find the following: (remember: v(t)=s'(t))

t	1	2	3	4	5	6	7
S(t)	45	56	78	90	35	30	25

- a) v(3)
- b) v(4.5)
- c) Find the average velocity on the interval [0,5].

14.

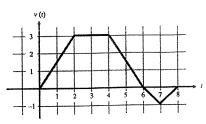
x	f(x)	g(x)	f'(x)	g'(x)
-1	0	-1	2	1

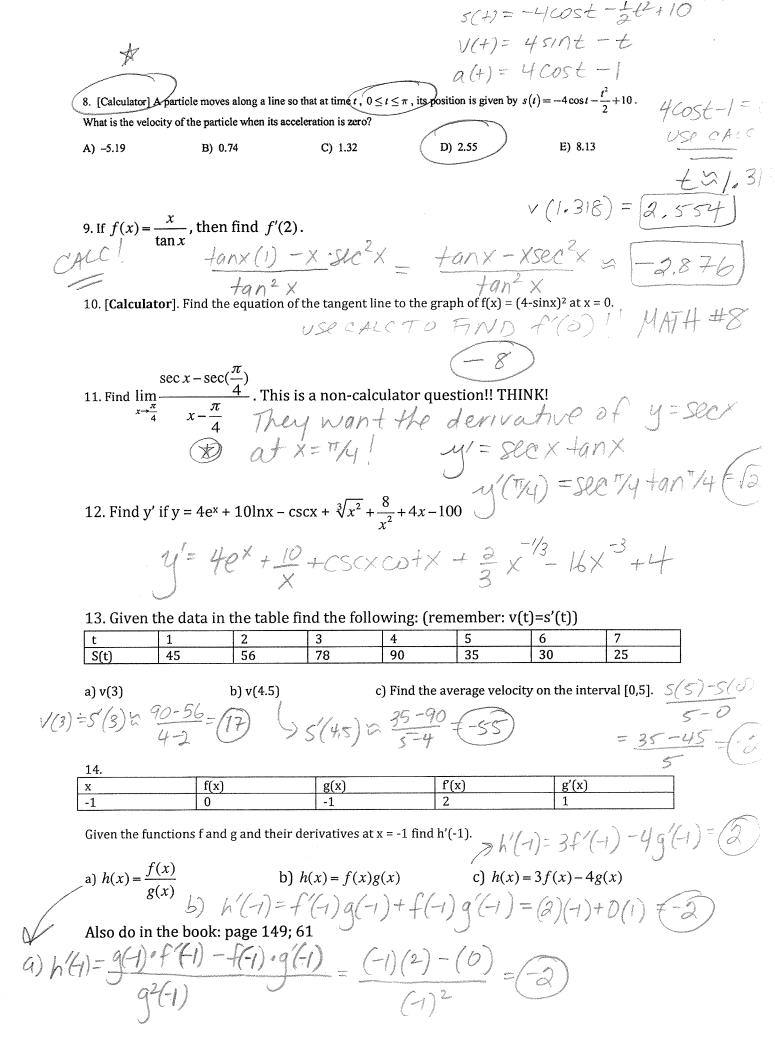
Given the functions f and g and their derivatives at x = -1 find h'(-1).

a)
$$h(x) = \frac{f(x)}{g(x)}$$

b)
$$h(x) = f(x)g(x)$$

b)
$$h(x) = f(x)g(x)$$
 c) $h(x) = 3f(x) - 4g(x)$


Also do in the book: page 149; 61



		AP Calculu	s AB Review She	et for Chapter 3 te	st	
	1. A spring is bobb	ing up and down so that its	position at any time $t \ge 0$	s given by $s(t) = -4\sin t$.		
	a) What is	the initial position of the s	spring? $S(\partial)$			
	b) Which	way is the particle moving	to start? Justify your response	onse. $V(+) = -C$	tcost	
			Down sma	e v(+)<0	0 - 11/2 1	
	c) At $t=\frac{1}{2}$	5 , is the spring moving up	or down? Justify your res	ponse.	0-1/27	571
		up SINC	Q V (ST/4)	>0		god dienes
	d) Is the s	pring speeding up or slowi	ng down at $t = \frac{5\pi}{4}$? Justify	your response.	+) = 451n	_ _ ,
	2. If $y = \sec x$, fin	-3	1(5/4)=	+ a(s	+/4)=	slowing d since the
dy =			1 = secxta	$n^2 \times + sec^3$	<	signs
W/\	3. If $r(t) = t^2$	$O \cap O$ 2 - 8t + 12 is a po	sition of a particle	e moving along the	x axis at time t ,	then
V(t) = 2t - 8 a(t) = 2	b) Find the v c) When is t d) When is t	everage velocity for the velocity at $t=4$ second the object stopped? $t=4$ he acceleration of the	1s. 0 11/3 _=4sec	f) When does g) When is the	the object change di the object slow down to object moving left?	rection? $t=4$ 0? $0 < t < 00 < t < 00 < t < 00 < t < 00 < t < 0$
-4+	V (+)		Λ I	3/10	A. A. A. A. A.	
- Sac	4. $\lim_{h\to 0} \frac{\sin(x+h)-1}{h}$	·sinx = USKING	tor the de	privof sinx	W/VCM IS	CD2X
. 4 5	A) 0	B) 1	C) $\sin x$	D) cos x	E) nonexistent	
	5. An equation of	the line tangent to the grap	oh of $y = x + \cos x$ at the p	soint (0, 1) is	= 1-5/hx	$m_{\tau} = 1 - \sin($
	A) $y = 2x + 1$	(B) y = x + 1	C) $y = x$	D) $y = x - 1$	E) y = 0	y-1 = 1(x-0) y = x+1
	6. If $y = \tan x - \cos x$	t x, then $\frac{dy}{dx} = \int e^{x^2}$				J=x+1
	A) $\sec x \csc x$	B) $\sec x - \csc x$	C) $\sec x + \csc x$	D) $\sec^2 x - \csc^2 x$	E) $\sec^2 x + \csc^2 x$	
	7 A bug bagins	s to crawl un a vertic	cal wire and it's velo	city at time t is given i	n the graph below	

Find:
a) When does the particle change direction? $\angle = 6$ b) When is the particle moving down? 6 < t < 8c) Is the particle speeding up or slowing down at t = 6.5?

Speeding $\sqrt{2}$ $\sqrt{(+)} \ge a(+)$ have $\frac{1}{2}$ $\frac{1}{2}$

