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(a) The tangent is parallel to the x-axis when
dy _ _2x+y

dx  x+2y

Substituting —2x for y in the original
€quation, we have

—0 ory=-2x

X%+ xy+ y2 =7
2+ (x)(=2x) + (=2x)2 = 7
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(b) Since x and y

are interchangeable ip the

. . dx
original equation, T can be obtained by
dy

interchanging x and yin the expression

d g ) "
for 2. That is, dx _ 2y+x .
dx

dy y+2x
tangent is parallel to the y-axis when

dx
& =0, or x=-2y. Substituting -2y for x
g

in the original equation, we have:
X2+ xy + y2 =7
(290> +(-20) () +y* =7
4y*=2y* +y* =17
3y2 =17
y=t «
3
The points are

G 60

Note that these are the same points that |
would be obtained by interchanging x an
y in the solution to part ().
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